Eigenvalue estimates for a generalized Paneitz operator

被引:0
|
作者
Azami, Shahroud [1 ]
机构
[1] Imam Khomeini Int Univ, Fac Sci, Dept Pure Math, Qazvin, Iran
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2023年 / 133卷 / 02期
关键词
Paneitz operator; eigenvalues; submanifolds; curvature;
D O I
10.1007/s12044-023-00749-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give some universal inequalities for the eigenvalues of a generalized Paneitz operator on a bounded domain in a complete Riemannian manifold. As an application, we obtain a universal bound for the (k + 1)-th eigenvalue of the weighted Paneitz operator on compact domains of complete submanifolds in the Euclidean space in terms of the first k eigenvalue independent of the domains.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] A generalized Holder type eigenvalue inequality
    Liu, Jun-Tong
    Poon, Yiu-Tung
    Wang, Qing-Wen
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (10) : 2145 - 2151
  • [42] Generalized multipoint conjugate eigenvalue problems
    Wong, PJY
    Agarwal, RP
    MATHEMATICAL AND COMPUTER MODELLING, 2000, 32 (5-6) : 733 - 745
  • [43] Generalized eigenvalue problems with specified eigenvalues
    Kressner, Daniel
    Mengi, Emre
    Nakic, Ivica
    Truhar, Ninoslav
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (02) : 480 - 501
  • [44] On the first eigenvalue of the Dirichlet-to-Neumann operator on forms
    Raulot, S.
    Savo, A.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (03) : 889 - 914
  • [45] On eigenvalue generic properties of the Laplace-Neumann operator
    Gomes, Jose N., V
    Marrocos, Marcus A. M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 135 : 21 - 31
  • [46] Extrinsic estimates for the eigenvalues of Schrodinger operator
    Huang, Guangyue
    Li, Xingxiao
    Xu, Ruiwei
    GEOMETRIAE DEDICATA, 2009, 143 (01) : 89 - 107
  • [47] Estimates for the first eigenvalue of the drifting Laplacian on embedded hypersurfaces
    Mao, Jing
    Xiang, Ni
    HOKKAIDO MATHEMATICAL JOURNAL, 2018, 47 (03) : 625 - 636
  • [48] EIGENVALUE ESTIMATES FOR HYPERSURFACES IN Hm x R AND APPLICATIONS
    Berard, Pierre
    Castillon, Philippe
    Cavalcante, Marcos
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 253 (01) : 19 - 35
  • [49] Extrinsic eigenvalue estimates of Dirac operators on Riemannian manifolds
    Huang, Guangyue
    Chen, Li
    Sun, Xiaomei
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (2-3) : 273 - 286
  • [50] Eigenvalue estimates using Rayleigh quotients of Hermitian matrices
    Drmac, Z
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON OPERATIONAL RESEARCH - KOI'98, 1999, : 35 - 37