Effect of bacteria on the self-healing ability of concrete containing zeolite

被引:2
|
作者
Baradaran, Mohammadreza [1 ]
Sadeghpour, Mahmoud [2 ]
机构
[1] Islamic Azad Univ, Dept Elect Engn, Firoozabad Branch, Meymand Ctr, Firoozabad, Iran
[2] Tech & Vocat Univ TVU, Fac Civil Engn, Dept Civil Engn, Tehran, Iran
关键词
Zeolite; Self-healing; Concrete; Bacteria; STRENGTH; CRACKS;
D O I
10.1007/s41062-023-01222-6
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Recent years have seen increasing interest in the use of bacteria to induce self-healing properties in concrete. In this study, the effect of Bacillus subtilis, Bacillus megaterium, and Sporosarcina pasteurii on the self-healing, durability, and strength properties of concrete containing zeolite was investigated. Four different concentrations of these bacteria were tested to determine the optimal concentration of each strain. Bacillus subtilis was isolated from alfalfa stems and leaves and Bacillus megaterium and Sporosarcina pasteurii were acquired as lyophilized ampoules and cultured in the laboratory. For zeolite-containing specimens, the mix design was modified to replace 20wt% of cement with zeolite. Four series of destructive and non-destructive tests including ultrasonic pulse velocity (UPV), impermeability, water absorption, and compressive strength tests were conducted on the specimens at different ages. To determine the effect of bacteria on the self-healing property, 3-day-old specimens were put under a load equal to 30% of the fracture load so that they would develop cracks and then imaged by a scanning electron microscope (SEM) and an optical microscope to examine the progress of self-healing. An energy-dispersive X-ray spectroscopy (EDS) analysis was also performed to identify the constituting elements of the specimens. The optimal concentration of each type of bacteria for maximum self-healing was determined from experimental results. The results showed that the best bacterial concentration for producing calcite and filling cracks and voids in concrete is 2.8 x 108 for Bacillus subtilis and 105 for Bacillus megaterium and Sporosarcina pasteurii. Using these concentrations resulted in enhanced compressive strength, lower permeability, lower water absorption, and improved UPV. The introduction of bacteria to the mix design decreased the concrete's water absorption by 15% in the absence of zeolite and by 30% in the presence of zeolite.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Effect of bacteria on the self-healing ability of concrete containing zeolite
    Mohammadreza Baradaran
    Mahmoud Sadeghpour
    Innovative Infrastructure Solutions, 2023, 8
  • [2] Effect of bacteria on the self-healing ability of fly ash concrete
    Sadeghpour, Mahmoud
    Baradaran, Mohammadreza
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 364
  • [3] Influence of Bacteria on Self-Healing Concrete
    Munoz-Perez, Socrates
    Carlos-Sanchez, Jorge
    Peralta-Sanchez, Miguel
    UIS INGENIERIAS, 2023, 22 (01): : 69 - 86
  • [4] A novel self-healing concrete thanks to bacteria incorporation
    Wiktor, V.
    Jonkers, H. M.
    MATERIAUX & TECHNIQUES, 2011, 99 (05): : 565 - 571
  • [5] Self-healing of concrete cracks by use of bacteria-containing low alkali cementitious material
    Xu, Jing
    Wang, Xianzhi
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 167 : 1 - 14
  • [6] Potential application of bacteria to improve the self-healing and strength of concrete
    Vashisht R.
    Shukla A.
    Journal of Building Pathology and Rehabilitation, 2020, 5 (1)
  • [7] Immobilizing bacteria in expanded perlite for the crack self-healing in concrete
    Zhang, Jiaguang
    Liu, Yuanzhen
    Feng, Tao
    Zhou, Mengjun
    Zhao, Lin
    Zhou, Aijuan
    Li, Zhu
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 148 : 610 - 617
  • [8] Quantification of crack-healing in novel bacteria-based self-healing concrete
    Wiktor, Virginie
    Jonkers, Henk M.
    CEMENT & CONCRETE COMPOSITES, 2011, 33 (07) : 763 - 770
  • [9] A study on self-healing concrete
    Safiuddin, Mohammed
    Ihtheshaam, Shaik
    Kareem, Rizwan Abdul
    Shalam
    MATERIALS TODAY-PROCEEDINGS, 2022, 52 : 1175 - 1181
  • [10] Application of bacteria as self-healing agent for the development of sustainable concrete
    Jonkers, Henk M.
    Thijssen, Arjan
    Muyzer, Gerard
    Copuroglu, Oguzhan
    Schlangen, Erik
    ECOLOGICAL ENGINEERING, 2010, 36 (02) : 230 - 235