Integration of calcium looping and calcium hydroxide thermochemical systems for energy storage and power production in concentrating solar power plants

被引:18
|
作者
Carro, A. [1 ]
Chacartegui, R. [1 ,3 ]
Ortiz, C. [2 ]
Arcenegui-Troya, J. [4 ]
Perez-Maqueda, L. A. [4 ]
Becerra, J. A. [1 ,3 ]
机构
[1] Univ Seville, Dept Ingn Energet, Camino Descubrimientos S-N, Seville 41092, Spain
[2] Univ Loyola Andalucia, Dept Engn, Mat & Sustainabil Grp, Avda Univ S-N, Dos Hermanas 41704, Seville, Spain
[3] Univ Seville, Lab Engn Energy & Environm Sustainabil, Seville 41092, Spain
[4] CSIC Univ Sevilla, Inst Ciencia Mat Sevilla, Americo Vespucio 49, Seville 41092, Spain
关键词
Thermochemical energy storage; CSP; Calcium looping; Calcium hydroxide; Calcium oxide; Calcium carbonate; 100-PERCENT RENEWABLE ENERGY; HEAT-TRANSFER; MULTICYCLE ACTIVITY; CO2; CAPTURE; LAB SCALE; GENERATION; CAO/CA(OH)(2); TEMPERATURE; CA(OH)(2); PRESSURES;
D O I
10.1016/j.energy.2023.128388
中图分类号
O414.1 [热力学];
学科分类号
摘要
Energy storage is a key factor in the development of renewables-based electrical power systems. In recent years, the thermochemical energy storage system based on calcium-looping has emerged as an alternative to molten salts for energy storage in high-temperature concentrated solar power plants. This technology still presents some challenges that could be solved by integrating the thermochemical energy storage system based on calcium hydroxide. This work studies a novel concentrated solar power system integrating calcium-looping and calcium hydroxide thermochemical energy storage systems. The results show that the combined use of hydration -dehydration cycles in the calcination-carbonation processes of the calcium looping for energy storage could partially solve the issue related to the multicyclic deactivation of calcium oxide. The improvement in the con-version of calcium oxide during carbonation is demonstrated experimentally when hydration-dehydration cycles are combined. Numerical simulations demonstrate the technical feasibility of the integrated process, with effi-ciencies ranging between 38-46%, improved with the increase in calcium oxide conversion in the carbonator, showing the potential of the proposed integration.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Optimizing the CSP-Calcium Looping integration for Thermochemical Energy Storage
    Alovisio, A.
    Chacartegui, R.
    Ortiz, C.
    Valverde, J. M.
    Verda, V.
    ENERGY CONVERSION AND MANAGEMENT, 2017, 136 : 85 - 98
  • [22] Calcium looping as chemical energy storage in concentrated solar power plants: Carbonator modelling and configuration assessment
    Bailera, Manuel
    Lisbona, Pilar
    Romeo, Luis M.
    Diez, Luis I.
    APPLIED THERMAL ENGINEERING, 2020, 172
  • [23] Thermal energy storage technologies and systems for concentrating solar power plants
    Kuravi, Sarada
    Trahan, Jamie
    Goswami, D. Yogi
    Rahman, Muhammad M.
    Stefanakos, Elias K.
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2013, 39 (04) : 285 - 319
  • [24] THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS
    Kuravi, Sarada
    Goswami, Yogi
    Stefanakos, Elias K.
    Ram, Manoj
    Jotshi, Chand
    Pendyala, Swetha
    Trahan, Jamie
    Sridharan, Prashanth
    Rahman, Muhammad
    Krakow, Burton
    TECHNOLOGY AND INNOVATION, 2012, 14 (02) : 81 - 91
  • [25] 110th Anniversary: Calcium Looping Coupled with Concentrated Solar Power for Carbon Capture and Thermochemical Energy Storage
    Tregambi, Claudio
    Di Lauro, Francesca
    Montagnaro, Fabio
    Salatino, Piero
    Solimene, Roberto
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (47) : 21262 - 21272
  • [26] Solar driven calcium-looping for thermochemical energy storage system and carbon capture in power and cement industry: A review
    Khan, M. Imran
    Mishamandani, Arian Shabruhi
    Asfand, Faisal
    Fadlallah, Sulaiman O.
    Kurniawan, Tonni Agustiono
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2025, 193 : 886 - 917
  • [27] Life cycle assessment of thermochemical energy storage integration concepts for a concentrating solar power plant
    Pelay, Ugo
    Azzaro-Pantel, Catherine
    Fan, Yilin
    Luo, Lingai
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2020, 39 (04)
  • [28] Calcium oxide based materials for thermochemical heat storage in concentrated solar power plants
    Sakellariou, Kyriaki G.
    Karagiannakis, George
    Criado, Yolanda A.
    Konstandopoulos, Athanasios G.
    SOLAR ENERGY, 2015, 122 : 215 - 230
  • [29] Solar-driven calcium looping in fluidized beds for thermochemical energy storage
    Tregambi, Claudio
    Di Lauro, Francesca
    Pascual, Sara
    Lisbona, Pilar
    Romeo, Luis M.
    Solimene, Roberto
    Salatino, Piero
    Montagnaro, Fabio
    CHEMICAL ENGINEERING JOURNAL, 2023, 466
  • [30] Storing solar energy with chemistry: the role of thermochemical storage in concentrating solar power
    Peng, Xinyue
    Root, Thatcher W.
    Maravelias, Christos T.
    GREEN CHEMISTRY, 2017, 19 (10) : 2427 - 2438