Nehari manifold approach for superlinear double phase problems with variable exponents

被引:13
|
作者
Crespo-Blanco, Angel [1 ]
Winkert, Patrick [1 ]
机构
[1] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
关键词
Double phase operator with variable exponent; Existence of solutions; Multiple solutions; Mountain pass theorem; Nehari manifold; EXISTENCE; REGULARITY; EIGENVALUES; FUNCTIONALS; MINIMIZERS; CALCULUS;
D O I
10.1007/s10231-023-01375-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider quasilinear elliptic equations driven by the variable exponent double phase operator with superlinear right-hand sides. Under very general assumptions on the nonlinearity, we prove a multiplicity result for such problems whereby we show the existence of a positive solution, a negative one and a solution with changing sign. The sign-changing solution is obtained via the Nehari manifold approach and, in addition, we can also give information on its nodal domains.
引用
收藏
页码:605 / 634
页数:30
相关论文
共 50 条
  • [41] Weighted Lorentz estimates for non-uniformly elliptic problems with variable exponents
    Tran, Minh-Phuong
    Nguyen, Thanh-Nhan
    Pham, Le-Tuyet-Nhi
    Dang, Thi-Thanh-Truc
    MANUSCRIPTA MATHEMATICA, 2023, 172 (3-4) : 1227 - 1244
  • [42] Existence Results for Double Phase Problem in Sobolev–Orlicz Spaces with Variable Exponents in Complete Manifold
    Ahmed Aberqi
    Jaouad Bennouna
    Omar Benslimane
    Maria Alessandra Ragusa
    Mediterranean Journal of Mathematics, 2022, 19
  • [43] Nehari manifold approach for fractional Kirchhoff problems with extremal value of the parameter
    Mishra, Pawan Kumar
    Tripathi, Vinayak Mani
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (02) : 919 - 943
  • [44] A minimization problem with variable growth on Nehari manifold
    Xia Zhang
    Monatshefte für Mathematik, 2016, 181 : 485 - 500
  • [45] Bounded weak solutions to superlinear Dirichlet double phase problems
    Sciammetta, Angela
    Tornatore, Elisabetta
    Winkert, Patrick
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (02)
  • [46] On logarithmic double phase problems
    Arora, Rakesh
    Crespo-Blanco, Angel
    Winkert, Patrick
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 433
  • [47] Non-Nehari Manifold Method for Periodic Discrete Superlinear Schrodinger Equation
    Tang, Xian Hua
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (04) : 463 - 473
  • [48] A new class of double phase variable exponent problems: Existence and uniqueness
    Crespo-Blanco, Angel
    Gasinski, Leszek
    Harjulehto, Petteri
    Winkert, Patrick
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 323 : 182 - 228
  • [49] The Nehari manifold for anisotropic Kirchhoff problems involving variable singular exponent and critical terms
    Hamidi, Abdellah
    Amrouss, Abdelrachid El
    Kissi, Fouad
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2025, 74 (01)
  • [50] Nehari manifold method for singular double phase problem with optimal control on parameter
    Fiscella, A.
    Mishra, P. K.
    Tripathi, V. M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (11)