Nehari manifold approach for superlinear double phase problems with variable exponents

被引:18
作者
Crespo-Blanco, Angel [1 ]
Winkert, Patrick [1 ]
机构
[1] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
关键词
Double phase operator with variable exponent; Existence of solutions; Multiple solutions; Mountain pass theorem; Nehari manifold; EXISTENCE; REGULARITY; EIGENVALUES; FUNCTIONALS; MINIMIZERS; CALCULUS;
D O I
10.1007/s10231-023-01375-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider quasilinear elliptic equations driven by the variable exponent double phase operator with superlinear right-hand sides. Under very general assumptions on the nonlinearity, we prove a multiplicity result for such problems whereby we show the existence of a positive solution, a negative one and a solution with changing sign. The sign-changing solution is obtained via the Nehari manifold approach and, in addition, we can also give information on its nodal domains.
引用
收藏
页码:605 / 634
页数:30
相关论文
共 53 条
[1]   Existence Results for Double Phase Problem in Sobolev-Orlicz Spaces with Variable Exponents in Complete Manifold [J].
Aberqi, Ahmed ;
Bennouna, Jaouad ;
Benslimane, Omar ;
Ragusa, Maria Alessandra .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (04)
[2]   Gradient and Parameter Dependent Dirichlet (p (x), q (x)) -Laplace Type Problem [J].
Albalawi, Kholoud Saad ;
Alharthi, Nadiyah Hussain ;
Vetro, Francesca .
MATHEMATICS, 2022, 10 (08)
[3]  
[Anonymous], 2010, The Method of Nehari Manifold, Handbook of Nonconvex Analysis and Applications
[4]   Double phase problems with variable growth and convection for the Baouendi-Grushin operator [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. ;
Winkert, Patrick .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (06)
[5]   NON-AUTONOMOUS FUNCTIONALS, BORDERLINE CASES AND RELATED FUNCTION CLASSES [J].
Baroni, P. ;
Colombo, M. ;
Mingione, G. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (03) :347-379
[6]   Regularity for general functionals with double phase [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[7]   Harnack inequalities for double phase functionals [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 :206-222
[8]   Lipschitz Bounds and Nonuniform Ellipticity [J].
Beck, Lisa ;
Mingione, Giuseppe .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2020, 73 (05) :944-1034
[9]   Optimal Lipschitz criteria and local estimates for non-uniformly elliptic problems [J].
Beck, Lisa ;
Mingione, Giuseppe .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2019, 30 (02) :223-236
[10]   Symmetry and monotonicity of singular solutions of double phase problems [J].
Biagi, Stefano ;
Esposito, Francesco ;
Vecchi, Eugenio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 280 :435-463