Nehari manifold approach for superlinear double phase problems with variable exponents

被引:13
|
作者
Crespo-Blanco, Angel [1 ]
Winkert, Patrick [1 ]
机构
[1] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
关键词
Double phase operator with variable exponent; Existence of solutions; Multiple solutions; Mountain pass theorem; Nehari manifold; EXISTENCE; REGULARITY; EIGENVALUES; FUNCTIONALS; MINIMIZERS; CALCULUS;
D O I
10.1007/s10231-023-01375-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider quasilinear elliptic equations driven by the variable exponent double phase operator with superlinear right-hand sides. Under very general assumptions on the nonlinearity, we prove a multiplicity result for such problems whereby we show the existence of a positive solution, a negative one and a solution with changing sign. The sign-changing solution is obtained via the Nehari manifold approach and, in addition, we can also give information on its nodal domains.
引用
收藏
页码:605 / 634
页数:30
相关论文
共 50 条
  • [1] Nehari manifold approach for superlinear double phase problems with variable exponents
    Ángel Crespo-Blanco
    Patrick Winkert
    Annali di Matematica Pura ed Applicata (1923 -), 2024, 203 : 605 - 634
  • [2] Existence of solutions for singular double phase problems via the Nehari manifold method
    Liu, Wulong
    Dai, Guowei
    Papageorgiou, Nikolaos S.
    Winkert, Patrick
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (03)
  • [3] Nehari manifold approach for double phase problems involving anisotropic matrices diffusion
    Charkaoui, Abderrahim
    Srati, Mohammed
    APPLICABLE ANALYSIS, 2025,
  • [4] Inverse Problems for Double-Phase Obstacle Problems with Variable Exponents
    Zeng, Shengda
    Papageorgiou, Nikolaos S.
    Winkert, Patrick
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 196 (02) : 666 - 699
  • [5] Sequences of nodal solutions for critical double phase problems with variable exponents
    Papageorgiou, Nikolaos S.
    Vetro, Francesca
    Winkert, Patrick
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (03):
  • [6] The Nehari manifold for double-phase problems with convex and concave nonlinearities
    Cao, Qing-Hai
    Ge, Bin
    Zhang, Yu-Ting
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (02) : 512 - 524
  • [7] Parametric superlinear double phase problems with singular term and critical growth on the boundary
    Crespo-Blanco, Angel
    Papageorgiou, Nikolaos S.
    Winkert, Patrick
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (04) : 2276 - 2298
  • [8] Gradient estimates for Orlicz double phase problems with variable exponents
    Baasandorja, Sumiya
    Byunb, Sun-Sig
    Lee, Ho-Sik
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 221
  • [9] Existence results for double phase obstacle problems with variable exponents
    Benslimane, Omar
    Aberqi, Ahmed
    Bennouna, Jaouad
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2021, 7 (02) : 875 - 890
  • [10] Weak solvability for a class of double phase variable exponents inclusion problems
    Cen, Jinxia
    Costea, Nicusor
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 144