Intelligent Machinery Fault Diagnosis Method Based on Adaptive Deep Convolutional Neural Network: Using Dental Milling Cutter Malfunction Classifications as an Example

被引:0
|
作者
Chen, Ming-Huang [1 ]
Chen, Shang-Liang [1 ]
Lin, Yu-Sheng [2 ]
Chen, Yu-Jen [2 ]
机构
[1] Natl Cheng Kung Univ, Inst Mfg Informat & Syst, Tainan 70101, Taiwan
[2] Southern Taiwan Univ Sci & Technol, Dept Mech Engn, Tainan 71005, Taiwan
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 13期
关键词
adaptive; convolutional neural network; fault diagnosis;
D O I
10.3390/app13137763
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Intelligent machinery fault diagnosis is one of the key technologies for the transformation and competitiveness of traditional factories. Complex production environments make it difficult to maintain good prediction performance using traditional methods. This paper proposes a deep convolutional neural network combined with an adaptive environmental noise method to achieve robust fault classification. The proposed method uses six-dimensional physical signals for data fusion and feature fusion, extracts obvious features and enhances subtle features, and uses continuous wavelets and Gramian angular fields to transform signals with different physical and frequency characteristics into time-frequency maps and two-dimensional images. The fusion technology of different signals can provide comprehensive features for fault prediction, improving upon the blind spots of traditional methods to extract features, and then perform prediction and classification through deep convolutional neural networks. In the experiment, the tool failure classification of the dental milling machine is used as a verification case. The results show that the prediction accuracy of the proposed method is nearly 100%, much better than other comparison methods. In addition, white noise was added in the experiment to verify the noise immunity of the model. The results show that the accuracy of the proposed method is 99%, which is better than other comparison methods in terms of accuracy and robustness, proving the effectiveness of the proposed method for fault diagnosis and classification.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network
    Li, Hongmei
    Huang, Jinying
    Ji, Shuwei
    SENSORS, 2019, 19 (09)
  • [42] Research on multitask fault diagnosis and weight visualization of rotating machinery based on convolutional neural network
    Feng, Fuzhou
    Wu, Chunzhi
    Zhu, Junzhen
    Wu, Shoujun
    Tian, Qingwen
    Jiang, Pengcheng
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2020, 42 (11)
  • [43] Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation
    Xiang Li
    Wei Zhang
    Qian Ding
    Jian-Qiao Sun
    Journal of Intelligent Manufacturing, 2020, 31 : 433 - 452
  • [44] Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation
    Li, Xiang
    Zhang, Wei
    Ding, Qian
    Sun, Jian-Qiao
    JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (02) : 433 - 452
  • [45] An Adaptive Weighted Multiscale Convolutional Neural Network for Rotating Machinery Fault Diagnosis Under Variable Operating Conditions
    Qiao, Huihui
    Wang, Taiyong
    Wang, Peng
    Zhang, Lan
    Xu, Mingda
    IEEE ACCESS, 2019, 7 : 118954 - 118964
  • [46] Adaptive resize-residual deep neural network for fault diagnosis of rotating machinery
    Zou, Li
    Lam, Heung Fai
    Hu, Jun
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2023, 22 (04): : 2193 - 2213
  • [47] A Fault Diagnosis Method of Tread Production Line Based on Convolutional Neural Network
    Wen Lihao
    Deng Yanni
    PROCEEDINGS OF 2018 IEEE 9TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2018, : 987 - 990
  • [48] A Fuzzy Fusion Rotating Machinery Fault Diagnosis Framework Based on the Enhancement Deep Convolutional Neural Networks
    Yang, Daoguang
    Karimi, Hamid Reza
    Gelman, Len
    SENSORS, 2022, 22 (02)
  • [49] Deep Convolutional Neural Network Using Transfer Learning for Fault Diagnosis
    Zhang, Dong
    Zhou, Taotao
    IEEE ACCESS, 2021, 9 : 43889 - 43897
  • [50] A new fault diagnosis method based on convolutional neural network and compressive sensing
    Ma, Yunfei
    Jia, Xisheng
    Bai, Huajun
    Liu, Guozeng
    Wang, Guanglong
    Guo, Chiming
    Wang, Shuangchuan
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2019, 33 (11) : 5177 - 5188