Intelligent Machinery Fault Diagnosis Method Based on Adaptive Deep Convolutional Neural Network: Using Dental Milling Cutter Malfunction Classifications as an Example

被引:0
|
作者
Chen, Ming-Huang [1 ]
Chen, Shang-Liang [1 ]
Lin, Yu-Sheng [2 ]
Chen, Yu-Jen [2 ]
机构
[1] Natl Cheng Kung Univ, Inst Mfg Informat & Syst, Tainan 70101, Taiwan
[2] Southern Taiwan Univ Sci & Technol, Dept Mech Engn, Tainan 71005, Taiwan
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 13期
关键词
adaptive; convolutional neural network; fault diagnosis;
D O I
10.3390/app13137763
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Intelligent machinery fault diagnosis is one of the key technologies for the transformation and competitiveness of traditional factories. Complex production environments make it difficult to maintain good prediction performance using traditional methods. This paper proposes a deep convolutional neural network combined with an adaptive environmental noise method to achieve robust fault classification. The proposed method uses six-dimensional physical signals for data fusion and feature fusion, extracts obvious features and enhances subtle features, and uses continuous wavelets and Gramian angular fields to transform signals with different physical and frequency characteristics into time-frequency maps and two-dimensional images. The fusion technology of different signals can provide comprehensive features for fault prediction, improving upon the blind spots of traditional methods to extract features, and then perform prediction and classification through deep convolutional neural networks. In the experiment, the tool failure classification of the dental milling machine is used as a verification case. The results show that the prediction accuracy of the proposed method is nearly 100%, much better than other comparison methods. In addition, white noise was added in the experiment to verify the noise immunity of the model. The results show that the accuracy of the proposed method is 99%, which is better than other comparison methods in terms of accuracy and robustness, proving the effectiveness of the proposed method for fault diagnosis and classification.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Fault Diagnosis Method of Mechanical Equipment Based on Convolutional Neural Network
    Zhou, Jun
    Zhang, Wenfeng
    Sun, WeiZhao
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ROBOTICS, INTELLIGENT CONTROL AND ARTIFICIAL INTELLIGENCE (RICAI 2019), 2019, : 459 - 465
  • [32] A novel fault diagnosis method based on convolutional neural network with adaptive noise injection
    Xiao, Lei
    Wang, Jun
    Liu, Ximing
    Sun, Huanan
    Zhao, Hailong
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (03)
  • [33] Bearing Fault Diagnosis Based on Adaptive Convolutional Neural Network With Nesterov Momentum
    Gao, Shuzhi
    Pei, Zhiming
    Zhang, Yimin
    Li, Tianchi
    IEEE SENSORS JOURNAL, 2021, 21 (07) : 9268 - 9276
  • [34] A hierarchical intelligent fault diagnosis algorithm based on convolutional neural network
    Qu J.-L.
    Yu L.
    Yuan T.
    Tian Y.-P.
    Gao F.
    Kongzhi yu Juece/Control and Decision, 2019, 34 (12): : 2619 - 2626
  • [35] A fault diagnosis scheme for rotating machinery using hierarchical symbolic analysis and convolutional neural network
    Yang, Yuantao
    Zheng, Huailiang
    Li, Yongbo
    Xu, Minqiang
    Chen, Yushu
    ISA TRANSACTIONS, 2019, 91 : 235 - 252
  • [36] Bearing Fault Diagnosis Method of Deep Convolutional Neural Network Based on Multiwavelet Decomposition
    Tao T.
    Zhou W.
    Kuang J.
    Xu G.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2024, 5 (31-41): : 31 - 41
  • [37] A Robust Fault Diagnosis Method for Rolling Bearings Based on Deep Convolutional Neural Network
    Li, Zhenxiang
    Zheng, Taisheng
    Yang, Wang
    Fu, Hongyong
    Wu, Wenbo
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [38] A New Data-Driven Intelligent Fault Diagnosis by Using Convolutional Neural Network
    Wen, Long
    Gao, Liang
    Li, Xinyu
    Xie, Minzhao
    Li, Guomin
    2017 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2017, : 813 - 817
  • [39] Research on multitask fault diagnosis and weight visualization of rotating machinery based on convolutional neural network
    Fuzhou Feng
    Chunzhi Wu
    Junzhen Zhu
    Shoujun Wu
    Qingwen Tian
    Pengcheng Jiang
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42
  • [40] Data Preprocessing Techniques in Convolutional Neural Network Based on Fault Diagnosis Towards Rotating Machinery
    Tang, Shengnan
    Yuan, Shouqi
    Zhu, Yong
    IEEE ACCESS, 2020, 8 : 149487 - 149496