On the broadcast independence number of circulant graphs

被引:1
|
作者
Laouar, Abdelamin [1 ]
Bouchemakh, Isma [1 ]
Sopena, Eric [2 ]
机构
[1] Univ Sci & Technol Houari Boumediene USTHB, Fac Math, Lab LIFORCE, BP 32 El Alia, Algiers 16111, Algeria
[2] Univ Bordeaux, Bordeaux INP, CNRS LaBRI, UMR 5800, F-33400 Talence, France
关键词
Broadcast; independent broadcast; circulant graph; DOMINATION; DIAMETER; NETWORKS;
D O I
10.1142/S1793830923500532
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An independent broadcast on a graph G is a function f : V -> {0, ..., diam(G)} such that (i) f(v) <= e(v) for every vertex v is an element of V (G), where diam(G) denotes the diameter of G and e(v) the eccentricity of vertex v, and (ii) d(u, v) > max{f(u), f(v)} for every two distinct vertices u and v with f(u)f(v) > 0. The broadcast independence number beta(b)(G) of G is then the maximum value of Sigma(v is an element of V) f(v), taken over all independent broadcasts on G. We prove that every circulant graph of the form C(n; 1, a), 3 <= a <= left perpendicularn/2right perpendicular, admits an optimal 2-bounded independent broadcast, that is, an independent broadcast f satisfying f(v) <= 2 for every vertex v, except when n = 2a + 1, or n = 2a and a is even. We then determine the broadcast independence number of various classes of such circulant graphs, and prove in particular that beta(b)(C(n; 1, a)) = alpha(C(n; 1, a)), except for C(n; 1, 2), C(2a + 1; 1, a), or C(2a; 1, a) with a not equal 2(p) and p >= 0, where alpha(C(n; 1, a)) denotes the independence number of C(n; 1, a).
引用
收藏
页数:36
相关论文
共 50 条
  • [41] On isomorphic factorizations of circulant graphs
    Alspach, Brian
    Dyer, Danny
    Kreher, Donald L.
    JOURNAL OF COMBINATORIAL DESIGNS, 2006, 14 (05) : 406 - 414
  • [42] Perfect codes in circulant graphs
    Feng, Rongquan
    Huang, He
    Zhou, Sanming
    DISCRETE MATHEMATICS, 2017, 340 (07) : 1522 - 1527
  • [43] The irregularity strength of circulant graphs
    Baril, JL
    Kheddouci, H
    Togni, O
    DISCRETE MATHEMATICS, 2005, 304 (1-3) : 1 - 10
  • [44] Restricted triangulation on circulant graphs
    Ali, Niran Abbas
    Kilicman, Adem
    Trao, Hazim Michman
    OPEN MATHEMATICS, 2018, 16 : 358 - 369
  • [45] On the kernel of integral circulant graphs
    Sander, J. W.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 549 : 79 - 85
  • [46] On the metric dimension of circulant graphs
    Imran, Muhammad
    Baig, A. Q.
    Bokhary, Syed Ahtsham Ul Haq
    Javaid, Imran
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 320 - 325
  • [47] Irregular labelings of circulant graphs
    Anholcer, Marcin
    Palmer, Cory
    DISCRETE MATHEMATICS, 2012, 312 (23) : 3461 - 3466
  • [48] On the diameter of integral circulant graphs
    Stevanovic, Dragan
    Petkovic, Marko
    Basic, Milan
    ARS COMBINATORIA, 2012, 106 : 495 - 500
  • [49] The partition dimension of circulant graphs
    Maritz, Elizabeth C. M.
    Vetrik, Tomas
    QUAESTIONES MATHEMATICAE, 2018, 41 (01) : 49 - 63
  • [50] On magic and supermagic circulant graphs
    Semanicova, Andrea
    DISCRETE MATHEMATICS, 2006, 306 (18) : 2263 - 2269