On the broadcast independence number of circulant graphs

被引:1
|
作者
Laouar, Abdelamin [1 ]
Bouchemakh, Isma [1 ]
Sopena, Eric [2 ]
机构
[1] Univ Sci & Technol Houari Boumediene USTHB, Fac Math, Lab LIFORCE, BP 32 El Alia, Algiers 16111, Algeria
[2] Univ Bordeaux, Bordeaux INP, CNRS LaBRI, UMR 5800, F-33400 Talence, France
关键词
Broadcast; independent broadcast; circulant graph; DOMINATION; DIAMETER; NETWORKS;
D O I
10.1142/S1793830923500532
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An independent broadcast on a graph G is a function f : V -> {0, ..., diam(G)} such that (i) f(v) <= e(v) for every vertex v is an element of V (G), where diam(G) denotes the diameter of G and e(v) the eccentricity of vertex v, and (ii) d(u, v) > max{f(u), f(v)} for every two distinct vertices u and v with f(u)f(v) > 0. The broadcast independence number beta(b)(G) of G is then the maximum value of Sigma(v is an element of V) f(v), taken over all independent broadcasts on G. We prove that every circulant graph of the form C(n; 1, a), 3 <= a <= left perpendicularn/2right perpendicular, admits an optimal 2-bounded independent broadcast, that is, an independent broadcast f satisfying f(v) <= 2 for every vertex v, except when n = 2a + 1, or n = 2a and a is even. We then determine the broadcast independence number of various classes of such circulant graphs, and prove in particular that beta(b)(C(n; 1, a)) = alpha(C(n; 1, a)), except for C(n; 1, 2), C(2a + 1; 1, a), or C(2a; 1, a) with a not equal 2(p) and p >= 0, where alpha(C(n; 1, a)) denotes the independence number of C(n; 1, a).
引用
收藏
页数:36
相关论文
共 50 条
  • [21] Relating broadcast independence and independence
    Bessy, S.
    Rautenbach, D.
    DISCRETE MATHEMATICS, 2019, 342 (12)
  • [22] Well-covered circulant graphs
    Brown, Jason
    Hoshino, Richard
    DISCRETE MATHEMATICS, 2011, 311 (04) : 244 - 251
  • [23] Bounds on the independence number and signless Laplacian index of graphs
    Liu, Huiqing
    Lu, Mei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 539 : 44 - 59
  • [24] DISTANCE LAPLACIAN EIGENVALUES OF GRAPHS, AND CHROMATIC AND INDEPENDENCE NUMBER
    Pirzada, Shariefuddin
    Khan, Saleem
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2024, 67 (01): : 145 - 159
  • [25] Stability of circulant graphs
    Qin, Yan-Li
    Xia, Binzhou
    Zhou, Sanming
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 136 : 154 - 169
  • [26] On Gorenstein circulant graphs
    Nikseresht, Ashkan
    Oboudi, Mohammad Reza
    DISCRETE MATHEMATICS, 2023, 346 (07)
  • [27] Integral circulant graphs
    So, WS
    DISCRETE MATHEMATICS, 2006, 306 (01) : 153 - 158
  • [28] Results about the total chromatic number and the conformability of some families of circulant graphs
    Faria, Luerbio
    Nigro, Mauro
    Preissmann, Myriam
    Sasaki, Diana
    DISCRETE APPLIED MATHEMATICS, 2023, 340 : 123 - 133
  • [29] On the decomposition of circulant graphs using algorithmic approaches
    El-Mesady, A.
    Hamed, Y. S.
    Shabana, H.
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (10) : 8263 - 8275
  • [30] Induced Matching Partition of Petersen and Circulant Graphs
    Shanthi, A. S.
    Rajasingh, Indra
    INTERNATIONAL CONFERENCE ON DESIGN AND MANUFACTURING (ICONDM2013), 2013, 64 : 395 - 400