IDENTIFYING CYCLIC AND (1+2v)-CONSTACYCLIC CODES OVER Z4[v]/(v3-1) WITH Z4-LINEAR CODES

被引:0
|
作者
Kom, St T. [1 ]
Devi, O. Ratnabala [1 ]
机构
[1] Manipur Univ, Dept Math, Imphal 795003, Manipur, India
来源
TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS | 2023年 / 13卷 / 03期
关键词
Cyclic code; Gray map; constacyclic code; quasi-cyclic code; skew consta-cyclic code; CONSTACYCLIC CODES; RING;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. This paper studies cyclic and (1 + 2v)-constacyclic codes over the ring Z4[v]/(v3 - 1). By introducing three different Gray maps, we show that the Gray images of cyclic codes are quasi-cyclic codes over Z4 and that of (1 + 2v)-constacyclic codes are cyclic, quasi-cyclic and permutation equivalent to quasi-cyclic codes over Z4. Moreover, we show that the Gray image of skew (1 + 2v)-constacyclic code is a quasi-cyclic code over Z4.
引用
收藏
页码:951 / 962
页数:12
相关论文
共 50 条
  • [41] A COMPLETE STRUCTURE OF SKEW CYCLIC CODES OVER Z4 + uZ4
    Shah, Saumya
    Sharma, Amit
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2025, 19 (01) : 259 - 275
  • [42] Skew cyclic codes over Z4 + uZ4 + vZ4
    Caliskan, Basri
    Aydin, Nuh
    Liu, Peihan
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2023, 15 (04): : 845 - 858
  • [43] Cyclic codes over Z4 with good parameters considering Lee weight
    Encheva, S
    Kohno, R
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1998, E81A (03) : 507 - 509
  • [44] Negacyclic codes over Z4 of even length
    Blackford, T
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (06) : 1417 - 1424
  • [45] Self-orthogonal codes over Z4 arising from the chain ring Z4[u]/⟨u2+1⟩
    Kim, Boran
    Han, Nayoung
    Lee, Yoonjin
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 78
  • [46] A note on cyclic codes over Z(4)
    Bandi, Rama Krishna
    Bhaintwal, Maheshanand
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2016, 8 (01)
  • [47] NEW NON-BINARY QUANTUM CODES FROM CONSTACYCLIC CODES OVER Fq[u,v]/⟨u2-1, v2 - v, uu - vu)
    Ma, Fanghui
    Gao, Jian
    Fu, Fang-Wei
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2019, 13 (03) : 421 - 434
  • [48] Quantum codes from cyclic codes over Fq + vFq + v2Fq + v3Fq + v4Fq
    Sabiri, Mohammed
    2021 INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGIES AND NETWORKING (COMMNET'21), 2021, : 149 - 152
  • [49] Quantum codes over Fp from cyclic codes over Fp[u, v]/⟨u2-1, v3 - v, uv - vu⟩
    Ashraf, Mohammad
    Mohammad, Ghulam
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (02): : 325 - 335
  • [50] On Z2Z2[u]Z2[u, v]-additive cyclic codes and their application in obtaining optimal codes
    Ashraf, Mohammad
    Asim, Mohd
    Mohammad, Ghulam
    Rehman, Washiqur
    Khan, Naim
    FILOMAT, 2024, 38 (08) : 2899 - 2914