IDENTIFYING CYCLIC AND (1+2v)-CONSTACYCLIC CODES OVER Z4[v]/(v3-1) WITH Z4-LINEAR CODES

被引:0
|
作者
Kom, St T. [1 ]
Devi, O. Ratnabala [1 ]
机构
[1] Manipur Univ, Dept Math, Imphal 795003, Manipur, India
来源
TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS | 2023年 / 13卷 / 03期
关键词
Cyclic code; Gray map; constacyclic code; quasi-cyclic code; skew consta-cyclic code; CONSTACYCLIC CODES; RING;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. This paper studies cyclic and (1 + 2v)-constacyclic codes over the ring Z4[v]/(v3 - 1). By introducing three different Gray maps, we show that the Gray images of cyclic codes are quasi-cyclic codes over Z4 and that of (1 + 2v)-constacyclic codes are cyclic, quasi-cyclic and permutation equivalent to quasi-cyclic codes over Z4. Moreover, we show that the Gray image of skew (1 + 2v)-constacyclic code is a quasi-cyclic code over Z4.
引用
收藏
页码:951 / 962
页数:12
相关论文
共 50 条
  • [1] On Constacyclic Codes Over Z4[v]/⟨v2 - v⟩ and Their Gray Images
    Dinh, Hai Q.
    Singh, Abhay Kumar
    Kumar, Narendra
    Sriboonchitta, Songsak
    IEEE COMMUNICATIONS LETTERS, 2018, 22 (09) : 1758 - 1761
  • [2] Infinite families of MDR cyclic codes over Z4 via constacyclic codes over Z4[u]/⟨u2-1⟩
    Han, Nayoung
    Kim, Bohyun
    Kim, Boran
    Lee, Yoonjin
    DISCRETE MATHEMATICS, 2020, 343 (03)
  • [3] A STUDY OF SKEW CONSTACYCLIC CODES OVER Z4
    Qi, Wei
    Zhang, Xiaolei
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2023, 61 (01): : 19 - 36
  • [4] (1+u)-Constacyclic codes over Z4 + uZ4
    Yu, Haifeng
    Wang, Yu
    Shi, Minjia
    SPRINGERPLUS, 2016, 5
  • [5] CYCLIC AND CONSTACYCLIC CODES OVER Z4 + wZ4
    Aydin, Nuh
    Cengellenmis, Yasemin
    Dertli, Abdullah
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (06) : 1447 - 1457
  • [6] A Class of Constacyclic Codes over the Ring Z4[u, v] /⟨u2, v2, uv - vu⟩ and Their Gray Images
    Islam, Habibul
    Prakash, Om
    FILOMAT, 2019, 33 (08) : 2237 - 2248
  • [7] A class of constacyclic codes over Z4[u]/⟨uk⟩
    Islam, Habibul
    Bag, Tushar
    Prakash, Om
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2019, 60 (1-2) : 237 - 251
  • [8] Complete classification for simple root cyclic codes over the local ring Z4[v]/⟨v2+2v⟩
    Cao, Yuan
    Cao, Yonglin
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2020, 12 (02): : 301 - 319
  • [9] (θi, λ)-constacyclic codes and DNA codes over Z4
    Uzekmek, Fatma Zehra
    Oztas, Elif Segah
    Ozen, Mehmet
    AIMS MATHEMATICS, 2024, 9 (10): : 27908 - 27929
  • [10] New Z4 codes from constacyclic codes over a non-chain ring
    Islam, Habibul
    Prakash, Om
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (01)