Arithmetic Progressions Among Powerful Numbers

被引:0
|
作者
Chan, Tsz Ho [1 ]
机构
[1] Kennesaw State Univ, Math Dept, Marietta, GA 30060 USA
关键词
powerful number; k-full number; arithmetic progression; abc-conjecture;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study k-term arithmetic progressions N, N + d, ... , N + (k - 1)d of powerful numbers. Unconditionally, we exhibit infinitely many 3-term arithmetic progressions of powerful numbers with d & LE; 5N1/2. Assuming the abc-conjecture, we obtain a nearly tight lower bound on the common difference. We also prove some partial results when k > 4 and pose some open questions.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] The divisor problem for arithmetic progressions
    李红泽
    ChineseScienceBulletin, 1995, (04) : 265 - 267
  • [32] Longest arithmetic progressions of palindromes
    Pongsriiam, Prapanpong
    JOURNAL OF NUMBER THEORY, 2021, 222 : 362 - 375
  • [33] On the Partitions of a Number into Arithmetic Progressions
    Munagi, Augustine O.
    Shonhiwa, Temba
    JOURNAL OF INTEGER SEQUENCES, 2008, 11 (05)
  • [34] Covering intervals with arithmetic progressions
    Balister, P.
    Bollobas, B.
    Morris, R.
    Sahasrabudhe, J.
    Tiba, M.
    ACTA MATHEMATICA HUNGARICA, 2020, 161 (01) : 197 - 200
  • [35] On the maximal length of arithmetic progressions
    Zhao, Minzhi
    Zhang, Huizeng
    ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 21
  • [36] Arithmetic progressions, quasi progressions, and Gallai-Ramsey colorings
    Mao, Yaping
    Ozeki, Kenta
    Robertson, Aaron
    Wang, Zhao
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2023, 193
  • [37] ON ARITHMETIC PROGRESSIONS ON GENUS TWO CURVES
    Ulas, Maciej
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (03) : 971 - 980
  • [38] The Riemann Zeta Function on Arithmetic Progressions
    Steuding, Joern
    Wegert, Elias
    EXPERIMENTAL MATHEMATICS, 2012, 21 (03) : 235 - 240
  • [39] COLORINGS WITH ONLY RAINBOW ARITHMETIC PROGRESSIONS
    Pach, J.
    Tomon, I.
    ACTA MATHEMATICA HUNGARICA, 2020, 161 (02) : 507 - 515
  • [40] Maximal arithmetic progressions in random subsets
    Benjamini, Itai
    Yadin, Ariel
    Zeitouni, Ofer
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 : 365 - 376