A Sensor for Electrochemical pH Monitoring Based on Laser-Induced Graphene Modified with Polyfolate

被引:2
|
作者
Zutautas, Vytautas [1 ]
Trusovas, Romualdas [2 ]
Sartanavicius, Aivaras [2 ]
Ratautas, Karolis [2 ]
Selskis, Algirdas [3 ]
Pauliukaite, Rasa [1 ]
机构
[1] Ctr Phys Sci & Technol, Dept Nanoengn, Savanoriu Ave 231, LT-02300 Vilnius, Lithuania
[2] Ctr Phys Sci & Technol, Dept Laser Technol, Savanoriu Ave 231, LT-02300 Vilnius, Lithuania
[3] Ctr Phys Sci & Technol, Dept Characterisat Mat Struct, Sauletekio Ave 3, LT-10257 Vilnius, Lithuania
关键词
pH monitoring; polyfolate; potentiometry; electrochemistry; electrochemical sensor; chitosan; laser-inducted graphene electrode; MODIFIED ELECTRODES; SUPERCAPACITOR; WETTABILITY; PERFORMANCE; IMPEDANCE; CARBON;
D O I
10.3390/chemosensors11060329
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A laser-induced graphene (LIG) modified with chitosan (Chit) and conducting polymer polyfolate (PFA) was used as a base to develop a flat and flexible pH sensor. LIGs were formed using two different irradiation wavelengths of 355 nm and 532 nm. Depending on the wavelengths, the obtained electrodes were named LIG355 and LIG532. Microscopic imaging revealed that the bare LIG electrode surface had rough structures after laser treatment giving hydrophilic properties, and that PFA forms fibre-like structures on Chit coated LIG. Electrochemical investigation with the redox probe demonstrated that diffusion is a limiting process at the bare and modified LIG electrodes. A capacitive behaviour was observed from electrochemical impedance spectra at bare electrodes, showing a rather rough interface at LIG355 but a microporous one at LIG532. The developed flat and flexible electrode was sensitive to pH in the region from 6.0 to 9.0. In the studied pH range, the sensitivity was 27.86 & PLUSMN; 0.81 for PFA/Chit/LIG355 and 30.32 & PLUSMN; 0.50 mV/pH for PFA/Chit/LIG532 with moderate stability for a period of more than two months.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Kraft-Based Femtosecond Laser-Induced Graphene for Electrochemical Dopamine Sensing
    Gao, Shutong
    Bian, Xiaomeng
    Bi, Hao
    Xing, Wen Qiang
    Su, Ruige
    Liang, Misheng
    Li, Tianshu
    You, Rui
    LANGMUIR, 2025, 41 (04) : 2744 - 2752
  • [32] Electrochemical Sensors Based on Flexible Laser-Induced Graphene for the Detection of Paraquat in Water
    Roy, Susanta Sinha
    Sain, Sourav
    Roy, Souradeep
    Mathur, Ashish
    Rajesh, V. M.
    Banerjee, Debosmita
    Sarkar, Biplab
    ACS APPLIED NANO MATERIALS, 2022, 5 (12) : 17516 - 17525
  • [33] Laser-induced graphene-based electrochemical biosensors for environmental applications: a perspective
    Vikram P. Wanjari
    A. Sudharshan Reddy
    Siddhartha P. Duttagupta
    Swatantra P. Singh
    Environmental Science and Pollution Research, 2023, 30 : 42643 - 42657
  • [34] Electrodeposited Silver Dendrites on Laser-Induced Graphene for Electrochemical Detection of Nitrate with Tunable Sensor Properties
    Adiraju, Anurag
    Jalasutram, Aditya
    Wang, Junfei
    Tegenkamp, Christoph
    Kanoun, Olfa
    ADVANCED MATERIALS INTERFACES, 2024, 11 (19)
  • [35] Graphene oxide humidity sensor with laser-induced graphene porous electrodes
    Zhu, Congcong
    Tao, Lu-Qi
    Wang, Ying
    Zheng, Kai
    Yu, Jiabing
    Xiandong, L.
    Chen, Xianping
    Huang, Yexiong
    SENSORS AND ACTUATORS B-CHEMICAL, 2020, 325 (325):
  • [36] A Bandi flexible pressure sensor based on the composite of laser-induced graphene and AgNWs
    Jiawei Zhang
    Yixuan Cui
    Chunxiao Liu
    Xiangfu Wang
    Weihua Tang
    Journal of Materials Science: Materials in Electronics, 2023, 34 (1)
  • [37] Laser-Induced Graphene-Based Pressure Sensor With Corrugated Polyimide Diaphragm
    Oda, Ryo
    Nakashima, Rihachiro
    Takahashi, Hidetoshi
    IEEE SENSORS JOURNAL, 2025, 25 (05) : 8115 - 8123
  • [38] Flexible Capacitive Pressure Sensor Based on Laser-Induced Graphene and Polydimethylsiloxane Foam
    Huang, Lixiong
    Wang, Han
    Zhan, Daohua
    Fang, Feiyu
    IEEE SENSORS JOURNAL, 2021, 21 (10) : 12048 - 12056
  • [39] A Bandi flexible pressure sensor based on the composite of laser-induced graphene and AgNWs
    Zhang, Jiawei
    Cui, Yixuan
    Liu, Chunxiao
    Wang, Xiangfu
    Tang, Weihua
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (01)
  • [40] Flexible leaf wetness sensor based on laser-induced graphene for precision agriculture
    Huang, Fei
    Ryan, Grace
    Mustafa, Zaid
    Leroux, Charline
    Lukman, James
    Woo, Qianyuan
    Gan, Wee Chen
    Tan, Swee Tiam
    Feng, Junping
    Aw, Kean
    SENSORS AND ACTUATORS A-PHYSICAL, 2025, 388