The artificial intelligence and machine learning in lung cancer immunotherapy

被引:56
作者
Gao, Qing [1 ]
Yang, Luyu [2 ]
Lu, Mingjun [1 ]
Jin, Renjing [1 ]
Ye, Huan [2 ]
Ma, Teng [1 ]
机构
[1] Capital Med Univ, Beijing Chest Hosp, Beijing TB & Thorac Tumor Res Inst, Canc Res Ctr, Beijing 101149, Peoples R China
[2] Capital Med Univ, Beijing Chest Hosp, Beijing TB & Thorac Tumor Inst, Dept Resp & Crit Care Med, Beijing 101149, Peoples R China
关键词
TUMOR-INFILTRATING LYMPHOCYTES; ADVERSE EVENTS; EXPRESSION; MICROENVIRONMENT; INHIBITION; PREDICTION; SIGNATURE; DIAGNOSIS; REVEALS; IMAGES;
D O I
10.1186/s13045-023-01456-y
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Since the past decades, more lung cancer patients have been experiencing lasting benefits from immunotherapy. It is imperative to accurately and intelligently select appropriate patients for immunotherapy or predict the immunotherapy efficacy. In recent years, machine learning (ML)-based artificial intelligence (AI) was developed in the area of medical-industrial convergence. AI can help model and predict medical information. A growing number of studies have combined radiology, pathology, genomics, proteomics data in order to predict the expression levels of programmed death-ligand 1 (PD-L1), tumor mutation burden (TMB) and tumor microenvironment (TME) in cancer patients or predict the likelihood of immunotherapy benefits and side effects. Finally, with the advancement of AI and ML, it is believed that "digital biopsy" can replace the traditional single assessment method to benefit more cancer patients and help clinical decision-making in the future. In this review, the applications of AI in PD-L1/TMB prediction, TME prediction and lung cancer immunotherapy are discussed.
引用
收藏
页数:18
相关论文
共 80 条
[1]   Characterisation and management of dermatologic adverse events to agents targeting the PD-1 receptor [J].
Belum, V. R. ;
Benhuri, B. ;
Postow, M. A. ;
Hellmann, M. D. ;
Lesokhin, A. M. ;
Segal, N. H. ;
Motzer, R. J. ;
Wu, S. ;
Busam, K. J. ;
Wolchok, J. D. ;
Lacouture, M. E. .
EUROPEAN JOURNAL OF CANCER, 2016, 60 :12-25
[2]   Machine Learning for Prediction of Immunotherapy Efficacy in Non-Small Cell Lung Cancer from Simple Clinical and Biological Data [J].
Benzekry, Sebastien ;
Grangeon, Mathieu ;
Karlsen, Melanie ;
Alexa, Maria ;
Bicalho-Frazeto, Isabella ;
Chaleat, Solene ;
Tomasini, Pascale ;
Barbolosi, Dominique ;
Barlesi, Fabrice ;
Greillier, Laurent .
CANCERS, 2021, 13 (24)
[3]   A Random Forest Genomic Classifier for Tumor Agnostic Prediction of Response to Anti-PD1 Immunotherapy [J].
Bigelow, Emma ;
Saria, Suchi ;
Piening, Brian ;
Curti, Brendan ;
Dowdell, Alexa ;
Weerasinghe, Roshanthi ;
Bifulco, Carlo ;
Urba, Walter ;
Finkelstein, Noam ;
Fertig, Elana J. ;
Baras, Alex ;
Zaidi, Neeha ;
Jaffee, Elizabeth ;
Yarchoan, Mark .
CANCER INFORMATICS, 2022, 21
[4]   Intrinsic and Extrinsic Transcriptional Profiles That Affect the Clinical Response to PD-1 Inhibitors in Patients with Non-Small Cell Lung Cancer [J].
Byeon, Hye Eun ;
Haam, Seokjin ;
Han, Jae Ho ;
Lee, Hyun Woo ;
Koh, Young Wha .
CANCERS, 2023, 15 (01)
[5]  
Chen M., 2023, J THORAC ONCOL, VS15560864, P00096
[6]   CT radiomics-based long-term survival prediction for locally advanced non-small cell lung cancer patients treated with concurrent chemoradiotherapy using features from tumor and tumor organismal environment [J].
Chen, Nai-Bin ;
Xiong, Mai ;
Zhou, Rui ;
Zhou, Yin ;
Qiu, Bo ;
Luo, Yi-Feng ;
Zhou, Su ;
Chu, Chu ;
Li, Qi-Wen ;
Wang, Bin ;
Jiang, Hai-Hang ;
Guo, Jin-Yu ;
Peng, Kang-Qiang ;
Xie, Chuan-Miao ;
Liu, Hui .
RADIATION ONCOLOGY, 2022, 17 (01)
[7]   Improved prediction of immune checkpoint blockade efficacy across multiple cancer types [J].
Chowell, Diego ;
Yoo, Seong-Keun ;
Valero, Cristina ;
Pastore, Alessandro ;
Krishna, Chirag ;
Lee, Mark ;
Hoen, Douglas ;
Shi, Hongyu ;
Kelly, Daniel W. ;
Patel, Neal ;
Makarov, Vladimir ;
Ma, Xiaoxiao ;
Vuong, Lynda ;
Sabio, Erich Y. ;
Weiss, Kate ;
Kuo, Fengshen ;
Lenz, Tobias L. ;
Samstein, Robert M. ;
Riaz, Nadeem ;
Adusumilli, Prasad S. ;
Balachandran, Vinod P. ;
Plitas, George ;
Hakimi, A. Ari ;
Abdel-Wahab, Omar ;
Shoushtari, Alexander N. ;
Postow, Michael A. ;
Motzer, Robert J. ;
Ladanyi, Marc ;
Zehir, Ahmet ;
Berger, Michael F. ;
Gonen, Mithat ;
Morris, Luc G. T. ;
Weinhold, Nils ;
Chan, Timothy A. .
NATURE BIOTECHNOLOGY, 2022, 40 (04) :499-+
[8]   Artificial intelligence in cancer research, diagnosis and therapy [J].
Elemento, Olivier ;
Leslie, Christina ;
Lundin, Johan ;
Tourassi, Georgia .
NATURE REVIEWS CANCER, 2021, 21 (12) :747-752
[9]   The immune contexture in human tumours: impact on clinical outcome [J].
Fridman, Wolf Herman ;
Pages, Franck ;
Sautes-Fridman, Catherine ;
Galon, Jerome .
NATURE REVIEWS CANCER, 2012, 12 (04) :298-306
[10]   Multi-Scale Deep Reinforcement Learning for Real-Time 3D-Landmark Detection in CT Scans [J].
Ghesu, Florin-Cristian ;
Georgescu, Bogdan ;
Zheng, Yefeng ;
Grbic, Sasa ;
Maier, Andreas ;
Hornegger, Joachim ;
Comaniciu, Dorin .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (01) :176-189