The tumor therapeutic potential of long non-coding RNA delivery and targeting

被引:20
作者
Han, Shuo [1 ,2 ]
Chen, Xinru [1 ]
Huang, Leaf [1 ]
机构
[1] Univ North Carolina Chapel Hill, Eshelman Sch Pharm, Div Pharmacoengn & Mol Pharmaceut, Chapel Hill, NC 27599 USA
[2] Southern Med Univ, Sch Publ Hlth, Dept Toxicol, Guangdong Prov Key Lab Trop Dis Res, Guangzhou 510000, Peoples R China
关键词
lncRNAs; RNA delivery; Cancer therapy; LNPs; RNA therapy; PLASMID-LIPID PARTICLES; MIMETIC NANOVESICLES; GENE; LNCRNA; CELL; EXPRESSION; PROGRESSION; COMPLEXES; PROSPECTS; EFFICIENT;
D O I
10.1016/j.apsb.2022.12.005
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Long non-coding RNAs (lncRNAs) is a type of RNA over 200 nt long without any protein coding ability, which has been investigated relating to crucial biological function in cells. There are many key lncRNAs in tumor/normal cells that serve as a biological marker or a new target for tumor treatment. However, compared to some small non-coding RNA, lncRNA-based drugs are limited in clinical application. Different from other non-coding RNA, like microRNAs, most lncRNAs have a high molecular weight and conserved secondary structure, making the delivery of lncRNAs more complex than the small non-coding RNAs. Considering that lncRNAs constitute the most abundant part of the mammalian genome, it is critical to further explore lncRNA delivery and the subsequent functional studies for potential clinical application. In this review, we will discuss the function and mechanism of lncRNAs in diseases, especially cancer, and different approaches for lncRNA transfection using multiple biomaterials.
引用
收藏
页码:1371 / 1382
页数:12
相关论文
共 86 条
  • [1] Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis
    Adams, D.
    Gonzalez-Duarte, A.
    O'Riordan, W. D.
    Yang, C. -C.
    Ueda, M.
    Kristen, A. V.
    Tournev, I.
    Schmidt, H. H.
    Coelho, T.
    Berk, J. L.
    Lin, K. -P.
    Vita, G.
    Attarian, S.
    Plante-Bordeneuve, V.
    Mezei, M. M.
    Campistol, J. M.
    Buades, J.
    Brannagan, T. H., III
    Kim, B. J.
    Oh, J.
    Parman, Y.
    Sekijima, Y.
    Hawkins, P. N.
    Solomon, S. D.
    Polydefkis, M.
    Dyck, P. J.
    Gandhi, P. J.
    Goyal, S.
    Chen, J.
    Strahs, A. L.
    Nochur, S. V.
    Sweetser, M. T.
    Garg, P. P.
    Vaishnaw, A. K.
    Gollob, J. A.
    Suhr, O. B.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2018, 379 (01) : 11 - 21
  • [2] LINC01355 suppresses breast cancer growth through FOXO3-mediated transcriptional repression of CCND1
    Ai, Bolun
    Kong, Xiangyi
    Wang, Xiangyu
    Zhang, Kai
    Yang, Xue
    Zhai, Jie
    Gao, Ran
    Qi, Yihang
    Wang, Jing
    Wang, Zhongzhao
    Fang, Yi
    [J]. CELL DEATH & DISEASE, 2019, 10 (7)
  • [3] Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses
    Alameh, Mohamad-Gabriel
    Tombacz, Istvan
    Bettini, Emily
    Lederer, Katlyn
    Sittplangkoon, Chutamath
    Wilmore, Joel R.
    Gaudette, Brian T.
    Soliman, Ousamah Y.
    Pine, Matthew
    Hicks, Philip
    Manzoni, Tomaz B.
    Knox, James J.
    Johnson, John L.
    Laczko, Dorottya
    Muramatsu, Hiromi
    Davis, Benjamin
    Meng, Wenzhao
    Rosenfeld, Aaron M.
    Strohmeier, Shirin
    Lin, Paulo J. C.
    Mui, Barbara L.
    Tam, Ying K.
    Kariko, Katalin
    Jacquet, Alain
    Krammer, Florian
    Bates, Paul
    Cancro, Michael P.
    Weissman, Drew
    Prak, Eline T. Luning
    Allman, David
    Locci, Michela
    Pardi, Norbert
    [J]. IMMUNITY, 2021, 54 (12) : 2877 - +
  • [4] MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches
    Amodio, Nicola
    Raimondi, Lavinia
    Juli, Giada
    Stamato, Maria Angelica
    Caracciolo, Daniele
    Tagliaferri, Pierosandro
    Tassone, Pierfrancesco
    [J]. JOURNAL OF HEMATOLOGY & ONCOLOGY, 2018, 11
  • [5] The Airn lncRNA does not require any DNA elements within its locus to silence distant imprinted genes
    Andergassen, Daniel
    Muckenhuber, Markus
    Bammer, Philipp C.
    Kulinski, Tomasz M.
    Theussl, Hans-Christian
    Shimizu, Takahiko
    Penninger, Josef M.
    Pauler, Florian M.
    Hudson, Quanah J.
    [J]. PLOS GENETICS, 2019, 15 (07):
  • [6] MALAT1 Long Non-Coding RNA: Functional Implications
    Arun, Gayatri
    Aggarwal, Disha
    Spector, David L.
    [J]. NON-CODING RNA, 2020, 6 (02)
  • [7] Cardiac Extracellular Vesicles (EVs) Released in the Presence or Absence of Inflammatory Cues Support Angiogenesis in Different Manners
    Beez, Christien Madlen
    Schneider, Maria
    Haag, Marion
    Pappritz, Kathleen
    Van Linthout, Sophie
    Sittinger, Michael
    Seifert, Martina
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (24)
  • [8] Post-translation modification of proteins; methodologies and applications in plant sciences
    Bond, A. E.
    Row, P. E.
    Dudley, E.
    [J]. PHYTOCHEMISTRY, 2011, 72 (10) : 975 - 996
  • [9] Therapeutic potential of extracellularvesicle-associatedlongnoncoding RNA
    Born, Louis J.
    Harmon, John W.
    Jay, Steven M.
    [J]. BIOENGINEERING & TRANSLATIONAL MEDICINE, 2020, 5 (03)
  • [10] microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer
    Braconi, C.
    Kogure, T.
    Valeri, N.
    Huang, N.
    Nuovo, G.
    Costinean, S.
    Negrini, M.
    Miotto, E.
    Croce, C. M.
    Patel, T.
    [J]. ONCOGENE, 2011, 30 (47) : 4750 - 4756