Resolution and contrast enhancement in weighted subtraction microscopy by deep learning

被引:2
作者
Qiu, Yuxuan [1 ]
Chen, Wei [1 ]
Huang, Yuran [1 ]
Xu, Yueshu [1 ,2 ]
Sun, Yile [1 ]
Jiang, Tao [1 ]
Zhang, Zhimin [1 ,3 ]
Tang, Longhua [1 ]
Hao, Xiang [1 ]
Kuang, Cuifang [1 ,2 ,4 ,5 ]
Liu, Xu [1 ,4 ,5 ]
机构
[1] Zhejiang Univ, Coll Opt Sci & Engn, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Peoples R China
[2] ZJU Hangzhou Global Sci & Technol Innovat Ctr, Hangzhou 315100, Peoples R China
[3] Zhejiang Lab, Res Ctr Intelligent Chips & Devices, Hangzhou 311121, Peoples R China
[4] Zhejiang Univ, Ningbo Res Inst, Ningbo 315100, Peoples R China
[5] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Super-resolution microscopy; Subtraction microscopy; Image reconstruction; Deep learning; EMISSION; ILLUMINATION; DIFFRACTION; LIMIT; FIELD;
D O I
10.1016/j.optlaseng.2023.107503
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In subtraction microscopy, the negative sidelobes are inevitably generated by the difference between the en-velopes of Gaussian and doughnut point spread functions (PSFs), resulting in undesired information loss. There-fore, the trade-off between high resolution and information loss hinders further improvement in the performance of subtraction microscopy. Moreover, the postprocessing subtraction algorithms derived from PSF algebra tend to cause artifacts in dense samples. Herein, we propose an adaptive algorithm for assignment of the subtractive coefficient based on deep learning, termed Deep-IWS, to enhance the performance of subtraction microscopy. Both simulation and experiment reveal that Deep-IWS increases the resolution 1.8 times better than confocal microscopy, and significantly outperforms the previous subtraction microscopy. Furthermore, the reconstructed images also have fewer artifacts with a higher signal-to-noise ratio (SNR), demonstrating the validity and supe-riority of our method.
引用
收藏
页数:7
相关论文
共 31 条
[1]  
Arjovsky M, 2017, PR MACH LEARN RES, V70
[2]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[3]  
Chen W., PYTHON CODE DEEP IWS
[4]   Temperature-Robust Learned Image Recovery for Shallow-Designed Imaging Systems [J].
Chen, Wei ;
Qi, Bingyun ;
Liu, Xu ;
Li, Haifeng ;
Hao, Xiang ;
Peng, Yifan .
ADVANCED INTELLIGENT SYSTEMS, 2022, 4 (10)
[5]   Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging [J].
Dehez, Harold ;
Piche, Michel ;
De Koninck, Yves .
OPTICS EXPRESS, 2013, 21 (13) :15912-15925
[6]   Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI) [J].
Dertinger, T. ;
Colyer, R. ;
Iyer, G. ;
Weiss, S. ;
Enderlein, J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (52) :22287-22292
[7]   Parameter-free image resolution estimation based on decorrelation analysis [J].
Descloux, A. ;
Grussmayer, K. S. ;
Radenovic, A. .
NATURE METHODS, 2019, 16 (09) :918-+
[8]   Enhanced axial resolution of lattice light sheet microscopy by fluorescence differential detection [J].
Gan, Yanhong ;
Ma, Ye ;
Gong, Wenwen ;
Liu, Wenjie ;
Wang, Ziang ;
Hao, Xiang ;
Han, Yubing ;
Kuang, Cuifnag ;
Liu, Xu .
OPTICS EXPRESS, 2022, 30 (15) :27381-27394
[9]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[10]   Deep low-excitation fluorescence imaging enhancement [J].
Gu, Yuanjie ;
Xiao, Zhibo ;
Hou, Wei ;
Liu, Cheng ;
Jin, Ying ;
Wang, Shouyu .
OPTICS LETTERS, 2022, 47 (16) :4175-4178