pynucastro: A Python']Python Library for Nuclear Astrophysics

被引:11
|
作者
Smith, Alexander I. [1 ]
Johnson, Eric T. [1 ]
Chen, Zhi [1 ]
Eiden, Kiran [2 ]
Willcox, Donald E. [3 ]
Boyd, Brendan [1 ]
Cao, Lyra [4 ]
DeGrendele, Christopher J. [5 ]
Zingale, Michael [1 ]
机构
[1] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[2] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, Berkeley, CA USA
[4] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA
[5] Univ Calif Santa Cruz, Dept Appl Math, Santa Cruz, CA 95064 USA
来源
ASTROPHYSICAL JOURNAL | 2023年 / 947卷 / 02期
关键词
WEAK INTERACTION RATES; NETWORK GENERATOR; HYDRODYNAMICS; COMPILATION; SUPERNOVAE; REDUCTION; EVOLUTION; BRUSLIB; CAPTURE; DENSITY;
D O I
10.3847/1538-4357/acbaff
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe pynucastro 2.0, an open-source library for interactively creating and exploring astrophysical nuclear reaction networks. We demonstrate new methods for approximating rates and use detailed balance to create reverse rates, show how to build networks and determine whether they are appropriate for a particular science application, and discuss the changes made to the library over the past few years. Finally, we demonstrate the validity of the networks produced and share how we use pynucastro networks in simulation codes.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] OSNMAlib: An Open Python']Python Library for Galileo OSNMA
    Galan, Aleix
    Fernandez-Hernandez, Ignacio
    Cucchi, Luca
    Seco-Granados, Gonzalo
    2022 10TH WORKSHOP ON SATELLITE NAVIGATION TECHNOLOGY (NAVITEC 2022), 2022,
  • [42] Stingray: A Modern Python']Python Library for Spectral Timing
    Huppenkothen, Daniela
    Bachetti, Matteo
    Stevens, Abigail L.
    Migliari, Simone
    Balm, Paul
    Hammad, Omar
    Khan, Usman Mahmood
    Mishra, Himanshu
    Rashid, Haroon
    Sharma, Swapnil
    Ribeiro, Evandro Martinez
    Blanco, Ricardo Valles
    ASTROPHYSICAL JOURNAL, 2019, 881 (01):
  • [43] A Python']Python library to check the level of anonymity of a dataset
    Sainz-Pardo Diaz, Judith
    Lopez Garcia, Alvaro
    SCIENTIFIC DATA, 2022, 9 (01)
  • [44] MANGO: A PYTHON']PYTHON LIBRARY FOR PARALLEL HYPERPARAMETER TUNING
    Sandha, Sandeep Singh
    Aggarwal, Mohit
    Fedorov, Igor
    Srivastava, Mani
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3987 - 3991
  • [45] PyHTK: PYTHON']PYTHON LIBRARY AND ASR PIPELINES FOR HTK
    Zhang, C.
    Kreyssig, F. L.
    Li, Q.
    Woodland, P. C.
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 6470 - 6474
  • [46] DESlib: A Dynamic ensemble selection library in Python']Python
    Cruz, Rafael M. O.
    Hafemann, Luiz G.
    Sabourin, Robert
    Cavalcanti, George D. C.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [47] COSMOS: Python']Python library for massively parallel workflows
    Gafni, Erik
    Luquette, Lovelace J.
    Lancaster, Alex K.
    Hawkins, Jared B.
    Jung, Jae-Yoon
    Souilmi, Yassine
    Wall, Dennis P.
    Tonellato, Peter J.
    BIOINFORMATICS, 2014, 30 (20) : 2956 - 2958
  • [48] QuantificationLib: A Python']Python library for quantification and prevalence estimation
    Castano, Alberto
    Alonso, Jaime
    Gonzalez, Pablo
    Perez, Pablo
    del Coz, Juan Jose
    SOFTWAREX, 2024, 26
  • [49] Ruffus: a lightweight Python']Python library for computational pipelines
    Goodstadt, Leo
    BIOINFORMATICS, 2010, 26 (21) : 2778 - 2779
  • [50] A Python']Python Library for Teaching Computation to Seismology Students
    Aiken, John M.
    Aiken, Chastity
    Cotton, Fabrice
    SEISMOLOGICAL RESEARCH LETTERS, 2018, 89 (03) : 1165 - 1171