Current Advancements in Spinal Cord Injury Research-Glial Scar Formation and Neural Regeneration

被引:87
作者
Clifford, Tanner [1 ]
Finkel, Zachary [1 ]
Rodriguez, Brianna [1 ]
Joseph, Adelina [1 ]
Cai, Li [1 ]
机构
[1] Rutgers State Univ, Dept Biomed Engn, 599 Taylor Rd, Piscataway, NJ 08854 USA
关键词
spinal cord; traumatic injury; glial scar formation; neural regeneration; therapy; cell transplantation; cell reprogramming; neural stem progenitor cells; MESENCHYMAL STEM-CELLS; FUNCTIONAL RECOVERY; REACTIVE ASTROCYTES; AXONAL GROWTH; CRITICAL REGULATOR; PROGENITOR CELLS; TISSUE-DAMAGE; FIBROTIC SCAR; I COLLAGEN; PROMOTES;
D O I
10.3390/cells12060853
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Spinal cord injury (SCI) is a complex tissue injury resulting in permanent and degenerating damage to the central nervous system (CNS). Detrimental cellular processes occur after SCI, including axonal degeneration, neuronal loss, neuroinflammation, reactive gliosis, and scar formation. The glial scar border forms to segregate the neural lesion and isolate spreading inflammation, reactive oxygen species, and excitotoxicity at the injury epicenter to preserve surrounding healthy tissue. The scar border is a physicochemical barrier composed of elongated astrocytes, fibroblasts, and microglia secreting chondroitin sulfate proteoglycans, collogen, and the dense extra-cellular matrix. While this physiological response preserves viable neural tissue, it is also detrimental to regeneration. To overcome negative outcomes associated with scar formation, therapeutic strategies have been developed: the prevention of scar formation, the resolution of the developed scar, cell transplantation into the lesion, and endogenous cell reprogramming. This review focuses on cellular/molecular aspects of glial scar formation, and discusses advantages and disadvantages of strategies to promote regeneration after SCI.
引用
收藏
页数:20
相关论文
共 155 条
[1]   Traumatic Spinal Cord Injury-Repair and Regeneration [J].
Ahuja, Christopher S. ;
Nori, Satoshi ;
Tetreault, Lindsay ;
Wilson, Jefferson ;
Kwon, Brian ;
Harrop, James ;
Choi, David ;
Fehlings, Michael G. .
NEUROSURGERY, 2017, 80 (03) :S9-S22
[2]   Astrocyte scar formation aids central nervous system axon regeneration [J].
Anderson, Mark A. ;
Burda, Joshua E. ;
Ren, Yilong ;
Ao, Yan ;
O'Shea, Timothy M. ;
Kawaguchi, Riki ;
Coppola, Giovanni ;
Khakh, Baljit S. ;
Deming, Timothy J. ;
Sofroniew, Michael V. .
NATURE, 2016, 532 (7598) :195-+
[3]   Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms [J].
Anjum, Anam ;
Yazid, Muhammad Da'in ;
Fauzi Daud, Muhammad ;
Idris, Jalilah ;
Ng, Angela Min Hwei ;
Selvi Naicker, Amaramalar ;
Ismail, Ohnmar Htwe Rashidah ;
Athi Kumar, Ramesh Kumar ;
Lokanathan, Yogeswaran .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (20) :1-35
[4]   Myelinogenic Plasticity of Oligodendrocyte Precursor Cells following Spinal Cord Contusion Injury [J].
Assinck, Peggy ;
Duncan, Greg J. ;
Plemel, Jason R. ;
Lee, Michael J. ;
Stratton, Jo A. ;
Manesh, Sohrab B. ;
Liu, Jie ;
Ramer, Leanne M. ;
Kang, Shin H. ;
Bergles, Dwight E. ;
Biernaskie, Jeff ;
Tetzlaff, Wolfram .
JOURNAL OF NEUROSCIENCE, 2017, 37 (36) :8635-8654
[5]   ErbB receptor signaling directly controls oligodendrocyte progenitor cell transformation and spontaneous remyelination after spinal cord injury [J].
Bartus, Katalin ;
Burnside, Emily R. ;
Galino, Jorge ;
James, Nicholas D. ;
Bennett, David L. H. ;
Bradbury, Elizabeth J. .
GLIA, 2019, 67 (06) :1036-1046
[6]   Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury [J].
Bellver-Landete, Victor ;
Bretheau, Floriane ;
Mailhot, Benoit ;
Vallieres, Nicolas ;
Lessard, Martine ;
Janelle, Marie-Eve ;
Vernoux, Nathalie ;
Tremblay, Marie-Eve ;
Fuehrmann, Tobias ;
Shoichet, Molly S. ;
Lacroix, Steve .
NATURE COMMUNICATIONS, 2019, 10 (1)
[7]   Ephrin-B3 is a myelin-based inhibitor of neurite outgrowth [J].
Benson, MD ;
Romero, MI ;
Lush, ME ;
Lu, QR ;
Henkemeyer, M ;
Parada, LF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (30) :10694-10699
[8]   Moving beyond the glial scar for spinal cord repair [J].
Bradbury, Elizabeth J. ;
Burnside, Emily R. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[9]   Rodent Neural Progenitor Cells Support Functional Recovery after Cervical Spinal Cord Contusion [J].
Brock, John Hoffman ;
Graham, Lori ;
Staufenberg, Eileen ;
Im, Sarah ;
Tuszynski, Mark Henry .
JOURNAL OF NEUROTRAUMA, 2018, 35 (09) :1069-1078
[10]   Improving hindlimb locomotor function by Non-invasive AAV-mediated manipulations of propriospinal neurons in mice with complete spinal cord injury [J].
Brommer, Benedikt ;
He, Miao ;
Zhang, Zicong ;
Yang, Zhiyun ;
Page, Jessica C. ;
Su, Junfeng ;
Zhang, Yu ;
Zhu, Junjie ;
Gouy, Emilia ;
Tang, Jing ;
Williams, Philip ;
Dai, Wei ;
Wang, Qi ;
Solinsky, Ryan ;
Chen, Bo ;
He, Zhigang .
NATURE COMMUNICATIONS, 2021, 12 (01)