Joint Cancer Segmentation and PI-RADS Classification on Multiparametric MRI Using MiniSegCaps Network

被引:3
|
作者
Jiang, Wenting [1 ]
Lin, Yingying [1 ]
Vardhanabhuti, Varut [1 ]
Ming, Yanzhen [1 ]
Cao, Peng [1 ]
机构
[1] Univ Hong Kong, Dept Diagnost Radiol, Hong Kong, Peoples R China
关键词
prostate cancer; PI-RADS classification; multi-parametric MRI; CapsuleNet; convolutional neural network; ACCURACY;
D O I
10.3390/diagnostics13040615
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
MRI is the primary imaging approach for diagnosing prostate cancer. Prostate ImagingReporting and Data System (PI-RADS) on multiparametric MRI (mpMRI) provides fundamentalMRI interpretation guidelines but suffers from inter-reader variability. Deep learning networks showgreat promise in automatic lesion segmentation and classification, which help to ease the burdenon radiologists and reduce inter-reader variability. In this study, we proposed a novel multi-branchnetwork, MiniSegCaps, for prostate cancer segmentation and PI-RADS classification on mpMRI.MiniSeg branch outputted the segmentation in conjunction with PI-RADS prediction, guided by theattention map from the CapsuleNet. CapsuleNet branch exploited the relative spatial information ofprostate cancer to anatomical structures, such as the zonal location of the lesion, which also reducedthe sample size requirement in training due to its equivariance properties. In addition, a gatedrecurrent unit (GRU) is adopted to exploit spatial knowledge across slices, improving through-planeconsistency. Based on the clinical reports, we established a prostate mpMRI database from 462 patientspaired with radiologically estimated annotations. MiniSegCaps was trained and evaluated withfivefold cross-validation. On 93 testing cases, our model achieved a 0.712 dice coefficient on lesionsegmentation, 89.18% accuracy, and 92.52% sensitivity on PI-RADS classification (PI-RADS >= 4) inpatient-level evaluation, significantly outperforming existing methods. In addition, a graphical userinterface (GUI) integrated into the clinical workflow can automatically produce diagnosis reportsbased on the results from MiniSegCaps.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Validation of the PI-RADS language: predictive values of PI-RADS lexicon descriptors for detection of prostate cancer
    Madhuri M. Rudolph
    Alexander D. J. Baur
    Matthias Haas
    Hannes Cash
    Kurt Miller
    Samy Mahjoub
    Alexander Hartenstein
    David Kaufmann
    Roman Rotzinger
    Chau Hung Lee
    Patrick Asbach
    Bernd Hamm
    Tobias Penzkofer
    European Radiology, 2020, 30 : 4262 - 4271
  • [42] RADIOMICS IN PI-RADS 3 MULTIPARAMETRIC MRI FOR PROSTATE CANCER IDENTIFICATION: A LITERATURE REVIEW AND PROPOSAL OF A MODEL COMBINING CLINICAL AND RADIOMIC FEATURES
    Roscigno, Marco
    Corsi, Andrea
    Bonaffini, Pietro Andrea
    De Bernardi, Elisabetta
    Franco, Paolo Niccolo
    Nicoletta, Dario
    Ippolito, Davide
    Perugini, Giovanna
    La Croce, Giovanni
    Catellani, Michele
    Da Pozzo, Luigi Filippo
    Sironi, Sandro
    ANTICANCER RESEARCH, 2022, 42 (10) : 5149 - 5150
  • [43] Avoiding biopsy in men with PI-RADS scores 1 and 2 on multiparametric MRI of the prostate, ready for prime time?
    Frydenberg, Mark
    BJU INTERNATIONAL, 2019, 124 (05) : 715 - 716
  • [44] THE VALUE OF PSA DENSITY IN PI-RADS 3 LESIONS ON MULTIPARAMETRIC MRI - A STRATEGY TO AVOID UNNECESSARY PROSTATE BIOPSIES
    Goertz, Magdalena
    Radtke, Jan Philipp
    Hatiboglu, Gencay
    Schuetz, Viktoria
    Tosev, Georgi
    Guettlein, Maximilian
    Leichsenring, Jonas
    Stenzinger, Albrecht
    Bonekamp, David
    Schlemmer, Heinz-Peter
    Hohenfellner, Markus
    Nyarangi-Dix, Joanne Nyaboe
    JOURNAL OF UROLOGY, 2020, 203 : E849 - E850
  • [45] CORRELATION BETWEEN DIAMETER OF PROSTATE CANCER FOCI ON MULTIPARAMETRIC PROSTATE MRI AND WHOLE MOUNT HISTOPATHOLOGY: STRATIFIED BY PI-RADS AND GLEASON SCORE
    Khoshnoodi, Pooria
    Tan, Nelly
    Margolis, Daniel J. A.
    Lin, Wei-Chan
    Thamtorawat, Somrach
    Lu, David Y.
    Huang, Jiaoti
    Reiter, Robert E.
    Raman, Steven S.
    JOURNAL OF UROLOGY, 2015, 193 (04): : E900 - E901
  • [46] Optimizing Prostate Imaging Practices in Saudi Arabian Hospitals: A Comprehensive Analysis of PI-RADS Compliance in Multiparametric MRI
    Alshuhri, Mohammed S.
    Alhulail, Ahmad A.
    Alqahtani, Abdullalh G. M.
    Madkhali, Yahia
    Alshehri, Abdullah M.
    Alghuraybi, Rakan A.
    Alqahtani, Saeed
    Binmhusien, Meshari Ali
    Alqahtani, Mansour
    Qaisi, Abdulrahman
    CURRENT MEDICAL IMAGING, 2024,
  • [47] Histopathologic correlation of PI-RADS V.2 lesions on 3T multiparametric prostate MRI
    Katz, Aaron
    Liu, Corinne
    Kosinski, Kaitlin E.
    JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (02)
  • [48] Prospective evaluation of multiparametric MRI of prostate and the prostate imaging reporting and data system (PI-RADS) version 2 for prostate cancer detection
    Lim, L. Y.
    INTERNATIONAL JOURNAL OF UROLOGY, 2019, 26 : 22 - 23
  • [49] Prostate cancer in PI-RADS scores 1 and 2 version 2.1: a comparison to previous PI-RADS versions
    Bogner, Katja
    Engelhard, Karl
    Wuest, Wolfgang
    Hamel, Sajad
    ABDOMINAL RADIOLOGY, 2022, 47 (06) : 2187 - 2196
  • [50] Prostate cancer in PI-RADS scores 1 and 2 version 2.1: a comparison to previous PI-RADS versions
    Katja Bogner
    Karl Engelhard
    Wolfgang Wuest
    Sajad Hamel
    Abdominal Radiology, 2022, 47 : 2187 - 2196