Joint Cancer Segmentation and PI-RADS Classification on Multiparametric MRI Using MiniSegCaps Network

被引:3
|
作者
Jiang, Wenting [1 ]
Lin, Yingying [1 ]
Vardhanabhuti, Varut [1 ]
Ming, Yanzhen [1 ]
Cao, Peng [1 ]
机构
[1] Univ Hong Kong, Dept Diagnost Radiol, Hong Kong, Peoples R China
关键词
prostate cancer; PI-RADS classification; multi-parametric MRI; CapsuleNet; convolutional neural network; ACCURACY;
D O I
10.3390/diagnostics13040615
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
MRI is the primary imaging approach for diagnosing prostate cancer. Prostate ImagingReporting and Data System (PI-RADS) on multiparametric MRI (mpMRI) provides fundamentalMRI interpretation guidelines but suffers from inter-reader variability. Deep learning networks showgreat promise in automatic lesion segmentation and classification, which help to ease the burdenon radiologists and reduce inter-reader variability. In this study, we proposed a novel multi-branchnetwork, MiniSegCaps, for prostate cancer segmentation and PI-RADS classification on mpMRI.MiniSeg branch outputted the segmentation in conjunction with PI-RADS prediction, guided by theattention map from the CapsuleNet. CapsuleNet branch exploited the relative spatial information ofprostate cancer to anatomical structures, such as the zonal location of the lesion, which also reducedthe sample size requirement in training due to its equivariance properties. In addition, a gatedrecurrent unit (GRU) is adopted to exploit spatial knowledge across slices, improving through-planeconsistency. Based on the clinical reports, we established a prostate mpMRI database from 462 patientspaired with radiologically estimated annotations. MiniSegCaps was trained and evaluated withfivefold cross-validation. On 93 testing cases, our model achieved a 0.712 dice coefficient on lesionsegmentation, 89.18% accuracy, and 92.52% sensitivity on PI-RADS classification (PI-RADS >= 4) inpatient-level evaluation, significantly outperforming existing methods. In addition, a graphical userinterface (GUI) integrated into the clinical workflow can automatically produce diagnosis reportsbased on the results from MiniSegCaps.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Classification of Cancer at Prostate MRI: Deep Learning versus Clinical PI-RADS Assessment
    Schelb, Patrick
    Kohl, Simon
    Radtke, Jan Philipp
    Wiesenfarth, Manuel
    Kickingereder, Philipp
    Bickelhaupt, Sebastian
    Kuder, Tristan Anselm
    Stenzinger, Albrecht
    Hohenfellner, Markus
    Schlemmer, Heinz-Peter
    Maier-Hein, Klaus H.
    Bonekamp, David
    RADIOLOGY, 2019, 293 (03) : 607 - 617
  • [22] PI-RADS 2.0 for Prostate MRI
    Franiel, T.
    Roethke, M.
    RADIOLOGE, 2017, 57 (08): : 665 - 678
  • [23] Comparison between biparametric and multiparametric MRI diagnosis strategy for prostate cancer in the peripheral zone using PI-RADS version 2.1
    Zhang, Jiahui
    Xu, Lili
    Zhang, Gumuyang
    Zhang, Xiaoxiao
    Bai, Xin
    Ji, Zhigang
    Xiao, Yu
    Sun, Hao
    Jin, Zhengyu
    ABDOMINAL RADIOLOGY, 2022, 47 (08) : 2905 - 2916
  • [24] Comparison between biparametric and multiparametric MRI diagnosis strategy for prostate cancer in the peripheral zone using PI-RADS version 2.1
    Jiahui Zhang
    Lili Xu
    Gumuyang Zhang
    Xiaoxiao Zhang
    Xin Bai
    Zhigang Ji
    Yu Xiao
    Hao Sun
    Zhengyu Jin
    Abdominal Radiology, 2022, 47 : 2905 - 2916
  • [25] Predicting cancer detection rates from multiparametricprostate MRI Beyond the PI-RADS classification system
    Perez-Londono, Agustin
    Ramos, Francisco
    Fleishman, Aaron
    Kaul, Sumedh
    Korets, Ruslan
    Johnson, Michael
    Olumi, Aria F.
    Tsai, Leo
    Gershman, Boris
    CUAJ-CANADIAN UROLOGICAL ASSOCIATION JOURNAL, 2025, 19 (03): : E85 - E91
  • [26] PI-RADS Multiparametric MRI Correlation with Radical Prostatectomy Histology: How have we progressed?
    Willox, Gregor
    Chemasle, Christophe
    ASIA-PACIFIC JOURNAL OF CLINICAL ONCOLOGY, 2021, 17 : 64 - 64
  • [27] Deep-Learning-Based Artificial Intelligence for PI-RADS Classification to Assist Multiparametric Prostate MRI Interpretation: A Development Study
    Sanford, Thomas
    Harmon, Stephanie A.
    Turkbey, Evrim B.
    Kesani, Deepak
    Tuncer, Sena
    Madariaga, Manuel
    Yang, Chris
    Sackett, Jonathan
    Mehralivand, Sherif
    Yan, Pingkun
    Xu, Sheng
    Wood, Bradford J.
    Merino, Maria J.
    Pinto, Peter A.
    Choyke, Peter L.
    Turkbey, Baris
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 52 (05) : 1499 - 1507
  • [28] EVALUATION OF PI-RADS SCORE ≤3 LESIONS AT MULTIPARAMETRIC MRI. IMPLICATION FOR CLINICAL MANAGEMENT AND PROSTATE CANCER DIAGNOSIS
    Di Trapani, Ettore
    Catellani, Michele
    Russo, Andrea
    Conti, Andrea
    Mistretta, Francesco Alessandro
    Ferro, Matteo
    Bianco, Raffaele
    Cioffi, Antonello
    Musi, Gennaro
    Renne, Giuseppe
    Matei, Deliu Victor
    De Cobelli, Ottavio
    ANTICANCER RESEARCH, 2018, 38 (04) : 2535 - 2535
  • [29] Prospective Evaluation of PI-RADS Version 2.1 for Prostate Cancer Detection and Investigation of Multiparametric MRI-derived Markers
    Yilmaz, Enis C.
    Shih, Joanna H.
    Belue, Mason J.
    Harmon, Stephanie A.
    Phelps, Tim E.
    Garcia, Charisse
    Hazen, Lindsey A.
    Toubaji, Antoun
    Merino, Maria J.
    Gurram, Sandeep
    Choyke, Peter L.
    Wood, Bradford J.
    Pinto, Peter A.
    Turkbey, Baris
    RADIOLOGY, 2023, 307 (04)
  • [30] Role of MRI radiomics analysis and Pi-RADS score in prostate cancer
    Angrisani, A.
    D'Alessandro, L.
    Grassi, R.
    Nardone, V.
    D'Ippolito, E.
    Guida, C.
    Reginelli, A.
    Cappabianca, S.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S1201 - S1201