Strain-induced tunable optoelectronic properties of inorganic halide perovskites APbCl3 (A = K, Rb, and Cs)

被引:36
作者
Islam, Md. Rasidul [1 ]
Mazumder, Abdullah Al Mamun [2 ]
Mojumder, Md. Rayid Hasan [2 ]
Shifat, A. S. M. Zadid [3 ]
Hossain, M. Khalid [4 ]
机构
[1] Bangamata Sheikh Fojilatunnesa Mujib Sci & Technol, Dept Elect & Elect Engn, Jamalpur 2012, Bangladesh
[2] Khulna Univ Engn & Technol, Dept Elect & Elect Engn, Khulna 9203, Bangladesh
[3] Univ New Mexico, Opt Sci & Engn, Albuquerque, NM USA
[4] Bangladesh Atom Energy Commiss, Atom Energy Res Estab, Inst Elect, Dhaka 1349, Bangladesh
关键词
perovskite; spin-orbit coupling effect; strain; optical features; electronic features; BAND-GAP; ABSORPTION; ELECTRON; BEHAVIOR; PB; SN;
D O I
10.35848/1347-4065/acb09e
中图分类号
O59 [应用物理学];
学科分类号
摘要
Halide perovskites are promising photovoltaic, solar cell, and semiconductor materials. Density-functional theory (DFT) models address compressive and tensile biaxial strain effects on APbCl(3), where A = (K, Rb, and Cs). This research shows how A-cation impacts bandgap energy and band structure. The direct bandgap for KPbCl3, RbPbCl3, and CsPbCl3 is found 1.612, 1.756, and 2.046 eV, respectively; increases from A = K to Cs. When spin-orbital coupling (SOC) is introduced, bandgaps in KPbCl3, RbPbCl3, and CsPbCl3 perovskites are reduced to 0.356, 0.512, and 0.773 eV, respectively. More tensile strain widens the bandgap; compressive strain narrows it. Without SOC, the bandgaps of KPbCl3, RbPbCl3, and CsPbCl3 were tuned from 0.486 to 2.213 eV, 0.778 to 2.289 eV, and 1.168 to 2.432 eV, respectively. When the compressive strain is increased, the dielectric constant of APbCl(3) decreases (redshift) and increases (blueshift) as the tensile strain is increased. Strain improves APbCl(3) perovskite's optical performance.
引用
收藏
页数:10
相关论文
共 48 条
[1]  
Adhyaksa G. W. P., 2019, ENERGY ENVIRON MATER, V342, P1584
[2]   Strongly emissive perovskite nanocrystal inks for high-voltage solar cells [J].
Akkerman, Quinten A. ;
Gandini, Marina ;
Di Stasio, Francesco ;
Rastogi, Prachi ;
Palazon, Francisco ;
Bertoni, Giovanni ;
Ball, James M. ;
Prato, Mirko ;
Petrozza, Annamaria ;
Manna, Liberato .
NATURE ENERGY, 2017, 2 (02)
[3]  
[Anonymous], 2022, MAT EXPLORER
[4]   Solar Energy Supply and Storage for the Legacy and Non legacy Worlds [J].
Cook, Timothy R. ;
Dogutan, Dilek K. ;
Reece, Steven Y. ;
Surendranath, Yogesh ;
Teets, Thomas S. ;
Nocera, Daniel G. .
CHEMICAL REVIEWS, 2010, 110 (11) :6474-6502
[5]   Inorganic alkali lead iodide semiconducting APbI(3) (A = Li, Na, K, Cs) and NH4PbI3 films prepared from solution: Structure, morphology, and electronic structure [J].
Dimesso, Lucangelo ;
Wussler, Michael ;
Mayer, Thomas ;
Mankel, Eric ;
Jaegermann, Wolfram .
AIMS MATERIALS SCIENCE, 2016, 3 (03) :737-755
[6]   Photovoltaics Reaching for the Shockley-Queisser Limit [J].
Ehrler, Bruno ;
Alarcon-Llado, Esther ;
Tabernig, Stefan W. ;
Veeken, Tom ;
Garnett, Erik C. ;
Polman, Albert .
ACS ENERGY LETTERS, 2020, 5 (09) :3029-3033
[7]   Inorganic caesium lead iodide perovskite solar cells [J].
Eperon, Giles E. ;
Paterno, Giuseppe M. ;
Sutton, Rebecca J. ;
Zampetti, Andrea ;
Haghighirad, Amir Abbas ;
Cacialli, Franco ;
Snaith, Henry J. .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (39) :19688-19695
[8]  
Giannozzi P., 2009, J. Phys. Condens. Matter, V21
[9]  
Gong M., 2019, ACS NANO, V13, P1772, DOI [10.1021/acsnano.9b00911, DOI 10.1021/ACSNANO.8B08726]
[10]   Organic-inorganic and all-inorganic lead halide nanoparticles [Invited] [J].
Gonzalez-Carrero, Soranyel ;
Galian, Raquel E. ;
Perez-Prieto, Julia .
OPTICS EXPRESS, 2016, 24 (02) :A285-A301