RyR2 Serine-2030 PKA Site Governs Ca2+ Release Termination and Ca2+ Alternans

被引:6
|
作者
Wei, Jinhong [1 ,2 ,7 ]
Guo, Wenting [1 ]
Wang, Ruiwu [1 ]
Estillore, John Paul [1 ]
Belke, Darrell [1 ]
Chen, Yong-Xiang [1 ]
Vallmitjana, Alexander [3 ]
Benitez, Raul [3 ]
Hove-Madsen, Leif [4 ,5 ]
Chen, S. R. Wayne [1 ,6 ]
机构
[1] Univ Calgary, Libin Cardiovasc Inst, Dept Physiol & Pharmacol, Calgary, AB T2N 4N1, Canada
[2] Northwest Univ, Sch Med, Xian, Peoples R China
[3] Univ Politecn Cataluna, Dept Automat Control, Barcelona 08034, Spain
[4] Hosp Santa Creu & Sant Pau, Biomed Res Inst Barcelona IIBB, CSIC, IIB St Pau, Barcelona 08025, Spain
[5] Hosp Santa Creu & Sant Pau, CIBERCV, Barcelona 08025, Spain
[6] Univ Calgary, Libin Cardiovasc Inst, Dept Physiol & Pharmacol, 3330 Hosp Dr NW, Calgary, AB T2N 4N1, Canada
[7] Northwest Univ, Sch Med, Xian 710069, Peoples R China
基金
加拿大健康研究院; 中国国家自然科学基金;
关键词
calcium; calmodulin; endoplasmic reticulum; mutation; phosphorylation; ryanodine receptor calcium release channel; CARDIAC RYANODINE RECEPTOR; SARCOPLASMIC-RETICULUM CA2+; POLYMORPHIC VENTRICULAR-TACHYCARDIA; T-WAVE ALTERNANS; SUDDEN-DEATH; PHOSPHORYLATION SITE; CALCIUM-RELEASE; COMMON DEFECT; MUTATIONS; REFRACTORINESS;
D O I
10.1161/CIRCRESAHA.122.321177
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background:PKA (protein kinase A)-mediated phosphorylation of cardiac RyR2 (ryanodine receptor 2) has been extensively studied for decades, but the physiological significance of PKA phosphorylation of RyR2 remains poorly understood. Recent determination of high-resolution 3-dimensional structure of RyR2 in complex with CaM (calmodulin) reveals that the major PKA phosphorylation site in RyR2, serine-2030 (S2030), is located within a structural pathway of CaM-dependent inactivation of RyR2. This novel structural insight points to a possible role of PKA phosphorylation of RyR2 in CaM-dependent inactivation of RyR2, which underlies the termination of Ca2+ release and induction of cardiac Ca2+ alternans. Methods:We performed single-cell endoplasmic reticulum Ca2+ imaging to assess the impact of S2030 mutations on Ca2+ release termination in human embryonic kidney 293 cells. Here we determined the role of the PKA site RyR2-S2030 in a physiological setting, we generated a novel mouse model harboring the S2030L mutation and carried out confocal Ca2+ imaging. Results:We found that mutations, S2030D, S2030G, S2030L, S2030V, and S2030W reduced the endoplasmic reticulum luminal Ca2+ level at which Ca2+ release terminates (the termination threshold), whereas S2030P and S2030R increased the termination threshold. S2030A and S2030T had no significant impact on release termination. Furthermore, CaM-wild-type increased, whereas Ca2+ binding deficient CaM mutant (CaM-M [a loss-of-function CaM mutation with all 4 EF-hand motifs mutated]), PKA, and Ca2+/CaMKII (CaM-dependent protein kinase II) reduced the termination threshold. The S2030L mutation abolished the actions of CaM-wild-type, CaM-M, and PKA, but not CaMKII, in Ca2+ release termination. Moreover, we showed that isoproterenol and CaM-M suppressed pacing-induced Ca2+ alternans and accelerated Ca2+ transient recovery in intact working hearts, whereas CaM-wild-type exerted an opposite effect. The impact of isoproterenol was partially and fully reversed by the PKA inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline-sulfonamide and the CaMKII inhibitor N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide individually and together, respectively. S2030L abolished the impact of CaM-wild-type, CaM-M, and N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline-sulfonamide-sensitive component, but not the N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide-sensitive component, of isoproterenol.
引用
收藏
页码:e59 / e77
页数:19
相关论文
共 50 条
  • [41] Routes of Ca2+ Shuttling during Ca2+ Oscillations FOCUS ON THE ROLE OF MITOCHONDRIAL Ca2+ HANDLING AND CYTOSOLIC Ca2+ BUFFERS
    Pecze, Laszlo
    Blum, Walter
    Schwaller, Beat
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2015, 290 (47) : 28214 - 28230
  • [42] Calsequestrin 2 deletion shortens the refractoriness of Ca2+ release and reduces rate-dependent Ca2+-alternans in intact mouse hearts
    Kornyeyev, Dmytro
    Petrosky, Azade D.
    Zepeda, Bernardo
    Ferreiro, Marcela
    Knollmann, Bjorn
    Escobar, Ariel L.
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2012, 52 (01) : 21 - 31
  • [43] Nanodomain Ca2+ of Ca2+ channels detected by a tethered genetically encoded Ca2+ sensor
    Tay, Lai Hock
    Dick, Ivy E.
    Yang, Wanjun
    Mank, Marco
    Griesbeck, Oliver
    Yue, David T.
    NATURE COMMUNICATIONS, 2012, 3
  • [44] Ca2+ dynamics in the lumen of the endoplasmic reticulum in sensory neurons:: direct visualization of Ca2+-induced Ca2+ release triggered by physiological Ca2+ entry
    Solovyova, N
    Veselovsky, N
    Toescu, EC
    Verkhratsky, A
    EMBO JOURNAL, 2002, 21 (04) : 622 - 630
  • [45] Diminished inhibition and facilitated activation of RyR2-mediated Ca2+ release is a common defect of arrhythmogenic calmodulin mutations
    Sondergaard, Mads T.
    Liu, Yingjie
    Brohus, Malene
    Guo, Wenting
    Nani, Alma
    Carvajal, Catherine
    Fill, Michael
    Overgaard, Michael T.
    Chen, S. R. Wayne
    FEBS JOURNAL, 2019, 286 (22) : 4554 - 4578
  • [46] The luminal Ca2+ chelator, TPEN, inhibits NAADP-induced Ca2+ release
    Morgan, Anthony J.
    Parrington, John
    Galione, Antony
    CELL CALCIUM, 2012, 52 (06) : 481 - 487
  • [47] CaMKIIδ mediates β-adrenergic effects on RyR2 phosphorylation and SR Ca2+ leak and the pathophysiological response to chronic β-adrenergic stimulation
    Grimm, Michael
    Ling, Haiyun
    Willeford, Andrew
    Pereira, Laetitia
    Gray, Charles B. B.
    Erickson, Jeffrey R.
    Sarma, Satyam
    Respress, Jonathan L.
    Wehrens, Xander H. T.
    Bers, Donald M.
    Brown, Joan Heller
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2015, 85 : 282 - 291
  • [48] Ambiguous interactions between diastolic and SR Ca2+ in the regulation of cardiac Ca2+ release
    Sobie, Eric A.
    Williams, George S. B.
    Lederer, W. J.
    JOURNAL OF GENERAL PHYSIOLOGY, 2017, 149 (09) : 846 - 854
  • [49] A reappraisal of the Ca2+ dependence of fast inactivation of Ca2+ release in frog skeletal muscle
    Fernando Olivera, J.
    Pizarro, Gonzalo
    JOURNAL OF MUSCLE RESEARCH AND CELL MOTILITY, 2010, 31 (02) : 81 - 92
  • [50] Low voltage-activated Ca2+ channels are coupled to Ca2+ induced Ca2+ release in rat thalamic midline neurons
    Richter, TA
    Kolaj, M
    Renaud, LP
    JOURNAL OF NEUROSCIENCE, 2005, 25 (36) : 8267 - 8271