A Review of Recent Advances, Challenges, and Opportunities in Malicious Insider Threat Detection Using Machine Learning Methods

被引:23
作者
Alzaabi, Fatima Rashed [1 ]
Mehmood, Abid [1 ]
机构
[1] Abu Dhabi Univ, Coll Engn, Abu Dhabi, U Arab Emirates
关键词
Insider threat detection; privilege escalation; anomaly detection; user action graph; cyber security; user behavior; temporal information; pre-trained language models; word embedding; CERT dataset;
D O I
10.1109/ACCESS.2024.3369906
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Insider threat detection has become a paramount concern in modern times where organizations strive to safeguard their sensitive information and critical assets from malicious actions by individuals with privileged access. This survey paper provides a comprehensive overview of insider threat detection, highlighting its significance in the current landscape of cybersecurity. The review encompasses a broad spectrum of methodologies and techniques, with a particular focus on classical machine-learning approaches and their limitations in effectively addressing the intricacies of insider threats. Furthermore, the survey explores the utilization of modern deep learning and natural language processing (NLP) based methods as promising alternatives, shedding light on their advantages over traditional methods. The comprehensive analysis of results from experiments utilizing NLP and large language models to detect malicious insider threats on the CMU CERT dataset reveals promising insights. Studies surveyed in this paper indicate that these advanced techniques demonstrate notable efficacy in identifying suspicious activities and anomalous behaviors associated with insider threats within organizational systems. Additionally, the survey underscores the potential of NLP and large language model-based approaches, which can enhance threat detection by deciphering textual and contextual information. In the conclusion section, the paper offers valuable insights into the future directions of insider threat detection. It advocates for the integration of more sophisticated time-series-based techniques, recognizing the importance of temporal patterns in insider threat behaviors. These recommendations reflect the evolving nature of insider threats and emphasize the need for proactive, data-driven strategies to safeguard organizations against internal security breaches. In conclusion, this survey not only underscores the urgency of addressing insider threats but also provides a roadmap for the adoption of advanced methodologies to enhance detection and mitigation capabilities in contemporary cybersecurity paradigms.
引用
收藏
页码:30907 / 30927
页数:21
相关论文
共 94 条
[81]  
Wanyonyi E. N., 2023, Int. J. Netw. Secur. Appl, V15, P37
[82]   Insider threat prediction based on unsupervised anomaly detection scheme for proactive forensic investigation [J].
Wei, Yichen ;
Chow, Kam-Pui ;
Yiu, Siu-Ming .
FORENSIC SCIENCE INTERNATIONAL-DIGITAL INVESTIGATION, 2021, 38
[83]  
Wise D., 1988, The Spy Who Got Away: The Inside Story of Edward Lee Howard,the CIA Agent Who Betrayed His Country's Secrets and Escaped toMoscow, V1st
[84]   Robust Anomaly-Based Insider Threat Detection Using Graph Neural Network [J].
Xiao, Junchao ;
Yang, Lin ;
Zhong, Fuli ;
Wang, Xiaolei ;
Chen, Hongbo ;
Li, Dongyang .
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2023, 20 (03) :3717-3733
[85]  
Xiaoshuang Sun, 2021, 2021 International Conference on Communications, Information System and Computer Engineering (CISCE), P749, DOI 10.1109/CISCE52179.2021.9445898
[86]   An improved feature extraction algorithm for insider threat using hidden Markov model on user behavior detection [J].
Ye, Xiaoyun ;
Han, Myung-Mook .
INFORMATION AND COMPUTER SECURITY, 2022, 30 (01) :19-36
[87]   A Simulation-Based Approach to Development of a New Insider Threat Detection Technique: Active Indicators [J].
Yerdon, Valarie A. ;
Wohleber, Ryan W. ;
Matthews, Gerald ;
Reinerman-Jones, Lauren E. .
ADVANCES IN HUMAN FACTORS IN CYBERSECURITY, AHFE 2018, 2019, 782 :3-14
[88]  
Yousef M., 2023, INT C SMART APPL COM, P1
[89]   Few-shot Insider Threat Detection [J].
Yuan, Shuhan ;
Zheng, Panpan ;
Wu, Xintao ;
Tong, Hanghang .
CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, :2289-2292
[90]  
Zhang S., 2021, Secur. Commun. Netw., P1