NAVS: A Neural Attention-Based Visual SLAM for Autonomous Navigation in Unknown 3D Environments

被引:2
作者
Wu, Yu [1 ]
Chen, Niansheng [1 ]
Fan, Guangyu [1 ]
Yang, Dingyu [2 ]
Rao, Lei [1 ]
Cheng, Songlin [1 ]
Song, Xiaoyong [1 ]
Ma, Yiping [3 ]
机构
[1] Shanghai DianJi Univ, Sch Elect Informat, Shanghai 200000, Peoples R China
[2] Alibaba Grp, Shanghai 200000, Peoples R China
[3] AVIC Huadong Photoelect Shanghai Co Ltd, Shanghai 200000, Peoples R China
基金
中国国家自然科学基金;
关键词
SLAM; Navigation; Attention mechanism; Deep reinforcement learning; ACTIVE SLAM; EXPLORATION;
D O I
10.1007/s11063-024-11502-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Navigation in unknown 3D environments aims to progressively find an efficient path to a given target goal in unseen scenarios. A challenge is how to explore the navigation quickly and effectively. An end-to-end learning approach has been proposed to extract geometric shapes from RGB images, but it is not suitable for large environments due to its exhaustive exploration with exponential search space. Active Neural SLAM (ANS) presents a Neural SLAM module to maximize the exploration coverage to tackle the active SLAM task. However, ANS still frequently visits the explored areas due to the inappropriate local target selection. In this paper, we propose a Neural Attention-based Visual SLAM (NAVS) model to explore unknown 3D environments. Spatial attention is provided to quickly identify obstacles (such as similarly colored tea table or floor). We also leverage the priority of unknown regions in the short-term goal decision to avoid frequent exploration with a channel attention. The experimental results show that our model can build a more accurate map than ANS and other baseline methods with less running time. In terms of relative coverage, NAVS achieves a 0.5%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} improvement over ANS in overall and a 1.1%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} improvement over ANS in large environments.
引用
收藏
页数:21
相关论文
共 47 条
  • [1] Ahmed MF, 2023, Arxiv, DOI arXiv:2212.11654
  • [2] Anderson P, 2018, Arxiv, DOI [arXiv:1807.06757, DOI 10.48550/ARXIV.1807.06757, 10.48550/arXiv.1807.06757]
  • [3] Active SLAM and Exploration with Particle Filters Using Kullback-Leibler Divergence
    Carlone, Luca
    Du, Jingjing
    Ng, Miguel Kaouk
    Bona, Basilio
    Indri, Marina
    [J]. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2014, 75 (02) : 291 - 311
  • [4] Chaplot D. S., 2020, Computer Vision-ECCV 2020
  • [5] Chaplot DS, 2020, ADV NEUR IN, V33
  • [6] Chaplot DS, 2020, PROC CVPR IEEE, P12872, DOI 10.1109/CVPR42600.2020.01289
  • [7] Chaplot Devendra Singh, 2021, PR MACH LEARN RES, V139
  • [8] Chaplot Devendra Singh, 2021, Advances in Neural Information Processing Systems, V34, P13086
  • [9] Chen T, 2019, Arxiv, DOI arXiv:1903.01959
  • [10] Active SLAM for Mobile Robots With Area Coverage and Obstacle Avoidance
    Chen, Yongbo
    Huang, Shoudong
    Fitch, Robert
    [J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2020, 25 (03) : 1182 - 1192