Sum formulas for Schur multiple zeta values

被引:3
作者
Bachmann, Henrik [1 ]
Kadota, Shin-ya [2 ]
Suzuki, Yuta [3 ]
Yamamoto, Shuji [4 ]
Yamasaki, Yoshinori [5 ]
机构
[1] Nagoya Univ, Grad Sch Math, Nagoya, Japan
[2] Natl Inst Technol KOSEN, Niihama Coll, Fac Fundamental Sci, Niihama, Japan
[3] Rikkyo Univ, Dept Math, Tokyo, Japan
[4] Keio Univ, Fac Sci & Technol, Yokohama, Japan
[5] Ehime Univ, Grad Sch Sci & Engn, Matsuyama, Japan
关键词
Schur multiple zeta values; Sum formulas; Integrals associated with 2-posets; Jacobi-Trudi formula;
D O I
10.1016/j.jcta.2023.105781
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study sum formulas for Schur multiple zeta values and give a generalization of the sum formulas for multiple zeta(-star) values. We show that for ribbons of certain types, the sum of Schur multiple zeta values over all admissible Young tableaux of this shape evaluates to a rational multiple of the Riemann zeta value. For arbitrary ribbons with n corners, we show that such a sum can be always expressed in terms of multiple zeta values of depth <= n. In particular, when n = 2, we give explicit, what we call, bounded type sum formulas for these ribbons. Finally, we show how to evaluate this sum when the corresponding Young diagram has exactly one corner and also prove bounded type sum formulas for them. This will also lead to relations among sums of Schur multiple zeta values over all admissible Young tableaux of different shapes. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:40
相关论文
共 9 条
[1]   INTERPOLATED SCHUR MULTIPLE ZETA VALUES [J].
Bachmann, Henrik .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 104 (03) :289-307
[2]   Applications of stuffle product of multiple zeta values [J].
Chen, Kwang-Wu .
JOURNAL OF NUMBER THEORY, 2015, 153 :107-116
[3]  
Granville A., 1997, Analytic number theory (Kyoto, 1996), V247, P95
[4]   The algebra of multiple harmonic series [J].
Hoffman, ME .
JOURNAL OF ALGEBRA, 1997, 194 (02) :477-495
[5]   MULTIPLE HARMONIC SERIES [J].
HOFFMAN, ME .
PACIFIC JOURNAL OF MATHEMATICS, 1992, 152 (02) :275-290
[6]   A new integral-series identity of multiple zeta values and regularizations [J].
Kaneko, Masanobu ;
Yamamoto, Shuji .
SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (03) :2499-2521
[7]   On Schur multiple zeta functions: A combinatoric generalization of multiple zeta functions [J].
Nakasuji, Maki ;
Phuksuwan, Ouamporn ;
Yamasaki, Yoshinori .
ADVANCES IN MATHEMATICS, 2018, 333 :570-619
[8]  
Yamamoto S., 2017, RIMS Kokyuroku Bessatsu, VB68, P3
[9]   EXPLICIT EVALUATION OF CERTAIN SUMS OF MULTIPLE ZETA-STAR VALUES [J].
Yamamoto, Shuji .
FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2013, 49 (02) :283-289