Toric differential forms and periods of complete intersections

被引:1
作者
Loyola, Roberto Villaflor [1 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Campus San Joaquin,Ave Vicuna Mackenna 4860, Santiago, Chile
关键词
periods; Algebric cycles; Toric varieties; Hodge cycles; Artin Gorenstein algebras; NOETHER-LEFSCHETZ LOCUS; GENERIC TORELLI; COMPONENTS; DIMENSION; THEOREM;
D O I
10.1016/j.jalgebra.2023.12.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n be an even natural number. We compute the periods of any �2-dimensional complete intersection algebraic cycle inside an n-dimensional non-degenerated intersection of a projective simplicial toric variety. Using this information we determine the cycle class of such algebraic cycles. As part of the proof we develop a toric generalization of a classical theorem of Macaulay about complete intersection Artin Gorenstein rings, and we generalize an algebraic cup formula for residue forms due to Carlson and Griffiths to the toric setting.
引用
收藏
页码:86 / 118
页数:33
相关论文
共 35 条
[1]   ON THE HODGE STRUCTURE OF PROJECTIVE HYPERSURFACES IN TORIC VARIETIES [J].
BATYREV, VV ;
COX, DA .
DUKE MATHEMATICAL JOURNAL, 1994, 75 (02) :293-338
[2]   Differential forms on quotients by reductive group actions [J].
Brion, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (09) :2535-2539
[3]  
CARLSON J, 1983, COMPOS MATH, V50, P109
[4]  
Carlson J., 1980, JOURNEES GEOMETRIE A, P51
[5]   Residues in toric varieties [J].
Cattani, E ;
Cox, D ;
Dickenstein, A .
COMPOSITIO MATHEMATICA, 1997, 108 (01) :35-76
[6]  
Cattani Eduardo., 1998, J MATH SCI-U TOKYO, V5, P119
[7]   GENERAL COMPONENTS OF THE NOETHER-LEFSCHETZ LOCUS AND THEIR DENSITY IN THE SPACE OF ALL SURFACES [J].
CILIBERTO, C ;
HARRIS, J ;
MIRANDA, R .
MATHEMATISCHE ANNALEN, 1988, 282 (04) :667-680
[8]   INTERMEDIATE JACOBIAN OF CUBIC THREEFOLD [J].
CLEMENS, CH ;
GRIFFITH.PA .
ANNALS OF MATHEMATICS, 1972, 95 (02) :281-&
[9]  
Cox D. A., 2011, TORIC VARIETIES
[10]  
COX DA, 1990, COMPOS MATH, V73, P121