Steam gasification of marine biomass and its biochars for hydrogen-rich gas production

被引:17
作者
Anniwaer, Aisikaer [1 ]
Yu, Tao [1 ]
Chaihad, Nichaboon [1 ]
Situmorang, Yohanes Andre [1 ]
Wang, Chao [1 ]
Kasai, Yutaka [3 ]
Abudula, Abuliti [1 ]
Guan, Guoqing [1 ,2 ]
机构
[1] Hirosaki Univ, Grad Sch Sci & Technol, 1 Bunkyocho, Hirosaki, Aomori, Japan
[2] Hirosaki Univ, Inst Reg Innovat, 2-1-3 Matsubara, Aomori, Japan
[3] Aomori Prefectural Ind Technol Res Ctr, Ind Res Inst, 4-11-6 Daini Tonyamachi, Aomori 0300113, Japan
关键词
Pyrolysis; Steam gasification; Marine biomass; Biochar; Biohydrogen; CATALYZED GASIFICATION; PYROLYSIS BEHAVIOR; CO-GASIFICATION; ALKALI; TAR; METAL; MECHANISMS; POTASSIUM; KINETICS; SEAWEED;
D O I
10.1007/s13399-020-00868-x
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this study, steam gasifications of a kind of marine biomass, i.e., Zostera marina (eelgrass), and the biochars derived from pyrolysis of it were carried out for the biohydrogen production in a fixed-bed reactor. The effects of reaction temperature and water injection rate on the hydrogen production were investigated. In order to understand the effect of sea salts attached on the surface of eelgrass for the hydrogen production, the eelgrass washed bywater (washed-eelgrass) was also used as the feedstock. It was observed that hydrogen productions from the gasification of washed-eelgrass as well as its biochar were higher than those of raw eelgrass and its biochar, indicating that the impurities of raw eelgrass had a negative effect on the hydrogen production. The biochar derived from the pyrolysis of washed eelgrass at 550 degrees C had the largest amount of hydrogen yield at the gasification temperature of 850 degrees C with a water injection rate of 0.15 g/min. It was found that both the hydrogen production and reaction rates were enhanced by mixing washed-eelgrass biochar obtained at 350 degrees C with the calcined seashells at a weight ratio of 1 to 2, especially at the gasification temperature of 650 degrees C. Meanwhile, in the presence of the calcined seashell, CO2 content decreased sharply whereas the hydrogen yield had no obvious increase.
引用
收藏
页码:8641 / 8650
页数:10
相关论文
共 50 条
  • [1] Steam gasification of marine biomass and its biochars for hydrogen-rich gas production
    Aisikaer Anniwaer
    Tao Yu
    Nichaboon Chaihad
    Yohanes Andre Situmorang
    Chao Wang
    Yutaka Kasai
    Abuliti Abudula
    Guoqing Guan
    Biomass Conversion and Biorefinery, 2023, 13 : 8641 - 8650
  • [2] Steam co-gasification of Japanese cedarwood and its commercial biochar for hydrogen-rich gas production
    Anniwaer, Aisikaer
    Chaihad, Nichaboon
    Zahra, Aghietyas Choirun Az
    Yu, Tao
    Kasai, Yutaka
    Kongparakul, Suwadee
    Samart, Chanatip
    Abudula, Abuliti
    Guan, Guoqing
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (70) : 34587 - 34598
  • [3] Biomass steam gasification for hydrogen-rich gas production in a decoupled dual loop gasification system
    Xiao, Yahui
    Xu, Shaoping
    Song, Yangbo
    Shan, Yiyuan
    Wang, Chao
    Wang, Guangyong
    FUEL PROCESSING TECHNOLOGY, 2017, 165 : 54 - 61
  • [4] Characteristics of hydrogen-rich gas production of biomass gasification with porous ceramic reforming
    Gao, Ningbo
    Li, Aimin
    Quan, Cui
    Qu, Yi
    Mao, Liaoyuan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (12) : 9610 - 9618
  • [5] Addition of torrefied algal biomass to improve land-based biomass gasification for hydrogen-rich gas production
    Zahra, Aghietyas Choirun Az
    Anniwaer, Aisikaer
    Okura, Hirozumi
    Chaerusani, Virdi
    Zhang, Pan
    Rizkiana, Jenny
    Kurnia, Irwan
    Abudula, Abuliti
    Guan, Guoqing
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2023, 74
  • [6] Hydrogen-rich gas production from wet biomass steam gasification with CaO/MgO
    Zhang, Bo
    Zhang, Li
    Yang, Zhongqing
    Yan, Yunfei
    Pu, Ge
    Guo, Mingnv
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (29) : 8816 - 8823
  • [7] Steam Gasification of Catalytic Pyrolysis Char for Hydrogen-rich Gas Production
    Sun, Wu-xing
    Zhou, Yan
    Wang, Qi
    Wang, Shu-rong
    ENERGY ENGINEERING AND ENVIRONMENTAL ENGINEERING, PTS 1AND 2, 2013, 316-317 : 105 - +
  • [8] Hydrogen-rich gas production through steam gasification of charcoal pellet
    Bartocci, P.
    Zampilli, M.
    Bidini, G.
    Fantozzi, F.
    APPLIED THERMAL ENGINEERING, 2018, 132 : 817 - 823
  • [9] Steam-gasification of biomass with CaO as catalyst for hydrogen-rich syngas production
    Zhou, Liang
    Yang, Zhiyong
    Tang, Anjiang
    Huang, Hongsheng
    Wei, Deju
    Yu, Erlei
    Lu, Wei
    JOURNAL OF THE ENERGY INSTITUTE, 2019, 92 (06) : 1641 - 1646
  • [10] An experimental study on hydrogen-rich gas production via steam gasification of biomass in a research-scale fluidized bed
    Fremaux, Sylvain
    Beheshti, Sayyed-Mohsen
    Ghassemi, Hojat
    Shahsavan-Markadeh, Rasoul
    ENERGY CONVERSION AND MANAGEMENT, 2015, 91 : 427 - 432