A Bregman inertial forward-reflected-backward method for nonconvex minimization

被引:0
|
作者
Wang, Xianfu [1 ]
Wang, Ziyuan [1 ]
机构
[1] Univ British Columbia, Irving K Barber Fac Sci, Dept Math, Kelowna, BC V1V 1V7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Generalized concave Kurdyka-Lojasiewicz property; Bregman proximal mapping; Forward-reflected-backward splitting; Implicit merit function; Nonconvex optimization; Inertial effect; PROXIMAL ALGORITHM; SPLITTING METHOD; CONVERGENCE; IPIANO; SUM;
D O I
10.1007/s10898-023-01348-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a Bregman inertial forward-reflected-backward (BiFRB) method for nonconvex composite problems. Assuming the generalized concave Kurdyka-Lojasiewicz property, we obtain sequential convergence of BiFRB, as well as convergence rates on both the function value and actual sequence. One distinguishing feature in our analysis is that we utilize a careful treatment of merit function parameters, circumventing the usual restrictive assumption on the inertial parameters. We also present formulae for the Bregman subproblem, supplementing not only BiFRB but also the work of Bot-Csetnek-Laszlo and Bot-Csetnek. Numerical simulations are conducted to evaluate the performance of our proposed algorithm.
引用
收藏
页码:327 / 354
页数:28
相关论文
共 50 条
  • [31] New inertial forward-backward algorithm for convex minimization with applications
    Kankam, Kunrada
    Cholamjiak, Watcharaporn
    Cholamjiak, Prasit
    DEMONSTRATIO MATHEMATICA, 2023, 56 (01)
  • [32] A DYNAMICAL APPROACH TO AN INERTIAL FORWARD-BACKWARD ALGORITHM FOR CONVEX MINIMIZATION
    Attouch, Hedy
    Peypouquet, Juan
    Redont, Patrick
    SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (01) : 232 - 256
  • [33] A gradient-type algorithm with backward inertial steps associated to a nonconvex minimization problem
    Alecsa, Cristian Daniel
    Laszlo, Szilard Csaba
    Viorel, Adrian
    NUMERICAL ALGORITHMS, 2020, 84 (02) : 485 - 512
  • [34] A NEW RELAXED INERTIAL FORWARD-BACKWARD-FORWARD METHOD FOR SOLVING THE CONVEX MINIMIZATION PROBLEM WITH APPLICATIONS TO IMAGE INPAINTING
    Kesornprom S.
    Cholamjiak P.
    Applied Set-Valued Analysis and Optimization, 2023, 5 (03): : 439 - 450
  • [35] A gradient-type algorithm with backward inertial steps associated to a nonconvex minimization problem
    Cristian Daniel Alecsa
    Szilárd Csaba László
    Adrian Viorel
    Numerical Algorithms, 2020, 84 : 485 - 512
  • [36] Outer reflected forward-backward splitting algorithm with inertial extrapolation step
    Shehu, Yekini
    Jolaoso, Lateef O.
    Okeke, C. C.
    Xu, Renqi
    OPTIMIZATION, 2024,
  • [37] An inertial stochastic Bregman generalized alternating direction method of multipliers for nonconvex and nonsmooth optimization
    Liu, Longhui
    Han, Congying
    Guo, Tiande
    Liao, Shichen
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 276
  • [38] A stochastic two-step inertial Bregman proximal alternating linearized minimization algorithm for nonconvex and nonsmooth problems
    Guo, Chenzheng
    Zhao, Jing
    Dong, Qiao-Li
    arXiv, 2023,
  • [39] A stochastic two-step inertial Bregman proximal alternating linearized minimization algorithm for nonconvex and nonsmooth problems
    Guo, Chenzheng
    Zhao, Jing
    Dong, Qiao-Li
    NUMERICAL ALGORITHMS, 2024, 97 (01) : 51 - 100
  • [40] Strong Convergence of Forward-Reflected-Backward Splitting Methods for Solving Monotone Inclusions with Applications to Image Restoration and Optimal Control
    Izuchukwu, Chinedu
    Reich, Simeon
    Shehu, Yekini
    Taiwo, Adeolu
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 94 (03)