Local well-posedness for the compressible Navier-Stokes-BGK model in Sobolev spaces with exponential weight

被引:0
作者
Choi, Young-Pil [1 ]
Jung, Jinwook [1 ,2 ]
机构
[1] Yonsei Univ, Dept Math, 50 Yonsei Ro, Seoul 03722, South Korea
[2] Jeonbuk Natl Univ, Inst Pure & Appl Math, 567 Baekje Daero, Jeonju Si 54896, Jeonrabug Do, South Korea
基金
新加坡国家研究基金会;
关键词
Particle-fluid system; Boltzmann BGK model; compressible Navier-Stokes system; well-posedness; GLOBAL WEAK SOLUTIONS; CLASSICAL-SOLUTIONS; HYDRODYNAMIC LIMIT; VLASOV; EXISTENCE; EQUATIONS; EULER; TIME; PART; MOMENTS;
D O I
10.1142/S0218202524500039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Sprays are complex flows constituted of dispersed particles in an underlying gas. In this paper, we are interested in the equations for moderately thick sprays consisting of the compressible Navier-Stokes (NS) equations and Boltzmann BGK equation. Here the coupling of two equations is through a friction (or drag) force which depends on the density of compressible fluid and the relative velocity between particles and fluid. For the NS-BGK system, we establish the existence and uniqueness of solutions in Sobolev spaces with exponential weight.
引用
收藏
页码:285 / 344
页数:60
相关论文
共 42 条