Local well-posedness for the compressible Navier-Stokes-BGK model in Sobolev spaces with exponential weight

被引:0
作者
Choi, Young-Pil [1 ]
Jung, Jinwook [1 ,2 ]
机构
[1] Yonsei Univ, Dept Math, 50 Yonsei Ro, Seoul 03722, South Korea
[2] Jeonbuk Natl Univ, Inst Pure & Appl Math, 567 Baekje Daero, Jeonju Si 54896, Jeonrabug Do, South Korea
基金
新加坡国家研究基金会;
关键词
Particle-fluid system; Boltzmann BGK model; compressible Navier-Stokes system; well-posedness; GLOBAL WEAK SOLUTIONS; CLASSICAL-SOLUTIONS; HYDRODYNAMIC LIMIT; VLASOV; EXISTENCE; EQUATIONS; EULER; TIME; PART; MOMENTS;
D O I
10.1142/S0218202524500039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Sprays are complex flows constituted of dispersed particles in an underlying gas. In this paper, we are interested in the equations for moderately thick sprays consisting of the compressible Navier-Stokes (NS) equations and Boltzmann BGK equation. Here the coupling of two equations is through a friction (or drag) force which depends on the density of compressible fluid and the relative velocity between particles and fluid. For the NS-BGK system, we establish the existence and uniqueness of solutions in Sobolev spaces with exponential weight.
引用
收藏
页码:285 / 344
页数:60
相关论文
共 42 条
  • [1] A New Approach to the Creation and Propagation of Exponential Moments in the Boltzmann Equation
    Alonso, Ricardo
    Canizo, Jose A.
    Gamba, Irene
    Mouhot, Clement
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2013, 38 (01) : 155 - 169
  • [2] Coupling Euler and Vlasov equations in the context of sprays: The local-in-time, classical solutions
    Baranger, C
    Desvillettes, L
    [J]. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2006, 3 (01) : 1 - 26
  • [3] EXISTENCE THEORY FOR THE KINETIC-FLUID COUPLING WHEN SMALL DROPLETS ARE TREATED AS PART OF THE FLUID
    Benjelloun, Saad
    Desvillettes, Laurent
    Moussa, Ayman
    [J]. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2014, 11 (01) : 109 - 133
  • [4] A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS
    BHATNAGAR, PL
    GROSS, EP
    KROOK, M
    [J]. PHYSICAL REVIEW, 1954, 94 (03): : 511 - 525
  • [5] Boudin L, 2009, DIFFER INTEGRAL EQU, V22, P1247
  • [6] On the analysis of a coupled kinetic-fluid model with local alignment forces
    Carrillo, Jose A.
    Choi, Young-Pil
    Karper, Trygve K.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (02): : 273 - 307
  • [7] GLOBAL CLASSICAL SOLUTIONS CLOSE TO EQUILIBRIUM TO THE VLASOV-FOKKER-PLANCK-EULER SYSTEM
    Carrillo, Jose A.
    Duan, Renjun
    Moussa, Ayman
    [J]. KINETIC AND RELATED MODELS, 2011, 4 (01) : 227 - 258
  • [8] GLOBAL CLASSICAL SOLUTIONS FOR A COMPRESSIBLE FLUID-PARTICLE INTERACTION MODEL
    Chae, Myeongju
    Kang, Kyungkeun
    Lee, Jihoon
    [J]. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2013, 10 (03) : 537 - 562
  • [9] Global existence of weak and classical solutions for the Navier-Stokes-Vlasov-Fokker-Planck equations
    Chae, Myeongju
    Kang, Kyungkeun
    Lee, Jihoon
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (09) : 2431 - 2465
  • [10] On the dynamics of charged particles in an incompressible flow: From kinetic-fluid to fluid-fluid models
    Choi, Young-Pil
    Jung, Jinwook
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (07)