Microencapsulation of Phenolic Compounds Extracted from Okra (Abelmoschus esculentus L.) Leaves, Fruits and Seeds

被引:2
|
作者
Guebebia, Salma [1 ]
Gharsallaoui, Adem [2 ]
Dumas, Emilie [2 ]
Baghi, Fatemeh [2 ,3 ]
Zourgui, Lazhar [4 ]
Romdhane, Mehrez [1 ]
Agusti, Geraldine [2 ]
Ghnimi, Sami [2 ,3 ]
机构
[1] Univ Gabes, Natl Sch Engineers Gabes ENIG, Lab Environm Catalysis & Proc Anal LEEEP, Medenine Rd, Gabes 6029, Tunisia
[2] Univ Claude Bernard Lyon 1, LAGEPP, UMR 5007, F-69622 Villeurbanne, France
[3] Higher Inst Agr & Agrifood Rhone Alpes, ISARA, 23 Rue Jean Baldassini, F-69007 Lyon, France
[4] Univ Gabes, Higher Inst Appl Biol Mednine ISBAM, Dept Biol Engn, Res Unit,Lab Act Biomol Valorisat, Gabes 6029, Tunisia
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 22期
关键词
Abelmoschus esculentus L; microencapsulation; phenolic compounds; antibacterial activity; microcapsules; spray-drying; WHEY-PROTEIN ISOLATE; ENCAPSULATION EFFICIENCY; PHYSICAL-CHARACTERISTICS; ANTIMICROBIAL ACTIVITY; STORAGE STABILITY; CARRIER AGENTS; WALL MATERIALS; JUICE; MALTODEXTRIN; ANTIOXIDANT;
D O I
10.3390/app132212273
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Several plants rich in phenolic compounds have many uses in the food and pharmaceu-tical fields. However, after extraction, these active biomolecules are susceptible to degradation. Microencapsulation is a possible solution to prevent this rapid degradation. In this study, phenolic compounds from the okra Abelmoschus esculentus L's leaves, fruits and seeds were extracted using microwave-assisted extraction and then microencapsulated via the spray drying technique using maltodextrin combined with pectin (in a ratio of 10:1) as an encapsulation material. The total phenolic content, DPPH scavenging and antimicrobial activities of okra extracts and encapsulated samples were evaluated to verify the encapsulation efficiency. Particle size distribution determination and scanning electron microscopy of the microcapsules were also carried-out. The ethanolic leaf extract showed higher significant levels of total phenolic compounds (162.46 +/- 4.48 mg GAE/g DW), and anti-oxidant (75.65%) and antibacterial activities compared to those of other aqueous and ethanolic extracts from fruits and seeds. Furthermore, the spray-dried ethanolic leaf extract had the highest total phenolic content. However, the encapsulated ethanolic fruit extract had the highest percent-age of DPPH scavenging activity (30.36% +/- 1.49). In addition, antibacterial activity measurements showed that the addition of ethanolic and aqueous seed microcapsules provided a significant zone of inhibition against the bacterium Brochotrix thermosphacta (38 mm and 30 mm, respectively). Okra aqueous leaf microcapsules showed the smallest Sauter mean diameter values (7.98 +/- 0.12 mu m). These data are applicable for expanding the use of okra leaves, fruits and seeds as food additives and/or preservatives in the food industry.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] The effect of EDTA and citric acid on biochemical processes and changes in phenolic compounds profile of okra (Abelmoschus esculentus L.) under mercury stress
    Mohammadi, Saba
    Pourakbar, Latifeh
    Moghaddam, Sina Siavash
    Popovic-Djordjevi, Jelena
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2021, 208
  • [22] Genetic variability and heritability in cultivated okra [Abelmoschus esculentus (L.) Moench]
    Nwangburuka, C. C.
    Denton, O. A.
    Kehinde, O. B.
    Ojo, D. K.
    Popoola, A. R.
    SPANISH JOURNAL OF AGRICULTURAL RESEARCH, 2012, 10 (01) : 123 - 129
  • [23] Genetic control of aluminium tolerance in okra (Abelmoschus esculentus (L.) Moench)
    Singh, D.
    SCIENTIA HORTICULTURAE, 2012, 138 : 134 - 137
  • [24] Inheritance studies for pigmentation in pods of okra (Abelmoschus esculentus L. Moench)
    Ranga, Aman Deep
    Vikram, Amit
    Kumar, Ramesh
    Dogra, Rajesh K.
    Sharma, Rajnish
    Jagannath, Bonde Kuldeep
    Rani, Amisha
    EUPHYTICA, 2024, 220 (12)
  • [25] Residues of thiamethoxam and acetamaprid, two neonicotinoid insecticides, in/on Okra fruits (Abelmoschus esculentus L)
    Singh, SB
    Kulshrestha, G
    BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, 2005, 75 (05) : 945 - 951
  • [26] Extraction and antioxidant activity analysis of total flavonoids from okra (Abelmoschus esculentus L.)
    Jiang, Lian
    Wang, Jiyue
    Chen, Nian
    Yang, Mingli
    Shi, Denghong
    JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION, 2025, 19 (03) : 2035 - 2051
  • [27] The Phosphoproteomic Response of Okra (Abelmoschus esculentus L.) Seedlings to Salt Stress
    Yu, Chenliang
    Wu, Qinqfei
    Sun, Chendong
    Tang, Mengling
    Sun, Junwei
    Zhan, Yihua
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (06):
  • [28] GENETIC BASIS OF VARIATION FOR SALINITY TOLERANCE IN OKRA (ABELMOSCHUS ESCULENTUS L.)
    Ikram-ul-Haq
    Khan, Asif Ali
    Azhar, F. M.
    Ullah, Ehsan
    PAKISTAN JOURNAL OF BOTANY, 2010, 42 (03) : 1567 - 1581
  • [29] Crop coefficient and water requirement of Okra (Abelmoschus Esculentus L. Moench)
    Patil, Chanabasanagouda S.
    MAUSAM, 2010, 61 (01): : 121 - 124
  • [30] Field efficiency of biofertilizers on the growth of okra (Abelmoschus esculentus [(L.) Moench])
    Nuruzzaman, M
    Ashrafuzzaman, M
    Islam, MZ
    Islam, MR
    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2003, 166 (06) : 764 - 770