Development and validation of a novel nomogram predicting clinically significant prostate cancer in biopsy-naive men based on multi-institutional analysis

被引:1
作者
Ge, Qingyu [1 ,2 ,3 ]
Zhang, Sicong [1 ,2 ]
Xu, Hewei [1 ,2 ]
Zhang, Junjie [1 ,2 ]
Fan, Zongyao [1 ,2 ]
Li, Weilong [1 ,2 ]
Shen, Deyun [3 ]
Xiao, Jun [3 ]
Wei, Zhongqing [1 ,2 ]
机构
[1] Nanjing Med Univ, Affiliated Hosp 2, Dept Urol, Nanjing 210000, Jiangsu, Peoples R China
[2] Nanjing Med Univ, Clin Med Coll 2, Dept Urol, Nanjing, Jiangsu, Peoples R China
[3] Univ Sci & Technol China, Affiliated Hosp USTC 1, Dept Urol, Hefei, Anhui, Peoples R China
来源
CANCER MEDICINE | 2023年 / 12卷 / 24期
关键词
multiparametric magnetic resonance imaging; nomogram; prostate-specific antigen density; prostatic neoplasms; GUIDELINES; ANTIGEN;
D O I
10.1002/cam4.6750
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Prediction of clinically significant prostate cancer (csPCa) is essential to select biopsy-naive patients for prostate biopsy. This study was to develop and validate a nomogram based on clinicodemographic parameters and exclude csPCa using prostate-specific antigen density (PSAD) stratification.Methods: Independent predictors were determined via univariate and multivariate logistic analysis and adopted for developing a predictive nomogram, which was assessed in terms of discrimination, calibration, and net benefit. Different PSAD thresholds were used for deciding immediate biopsies in patients with Prostate Imaging-Reporting and Data System (PI-RADS) 3 lesions.Results: A total of 932 consecutive patients who underwent ultrasound-guided transperineal cognitive biopsy were enrolled in our study. In the development cohort, age (odds ratio [OR], 1.075; 95% confidence interval [CI], 1.036-1.114), PSAD (OR, 6.003; 95% CI, 2.826-12.751), and PI-RADS (OR, 3.419; 95% CI, 2.453-4.766) were significant predictors for csPCa. On internal and external validation, this nomogram showed high areas under the curve of 0.943, 0.922, and 0.897, and low Brier scores of 0.092, 0.102, and 0.133 and insignificant unreliability tests of 0.713, 0.490, and 0.859, respectively. Decision curve analysis revealed this model could markedly improve clinical net benefit. The probability of excluding csPCa was 98.51% in patients with PI-RADS 3 lesions and PSAD <0.2 ng/ml(2) .Conclusion: This novel nomogram including age, PSAD, and PI-RADS could be applied to accurately predict csPCa, and 44.08% of patients with equivocal imaging findings plus PSAD <0.2 ng/ml(2) could safely forgo biopsy.
引用
收藏
页码:21820 / 21829
页数:10
相关论文
共 36 条
  • [1] Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study
    Ahmed, Hashim U.
    Bosaily, Ahmed El-Shater
    Brown, Louise C.
    Gabe, Rhian
    Kaplan, Richard
    Parmar, Mahesh K.
    Collaco-Moraes, Yolanda
    Ward, Katie
    Hindley, Richard G.
    Freeman, Alex
    Kirkham, Alex P.
    Oldroyd, Robert
    Parker, Chris
    Emberton, Mark
    [J]. LANCET, 2017, 389 (10071) : 815 - 822
  • [2] Characterizing indeterminate (Likert-score 3/5) peripheral zone prostate lesions with PSA density, PI-RADS scoring and qualitative descriptors on multiparametric MRI
    Appayya, Mrishta Brizmohun
    Sidhu, Harbir S.
    Dikaios, Nikolaos
    Johnston, Edward W.
    Simons, Lucy A. M.
    Freeman, Alex
    Kirkham, Alexander P. S.
    Ahmed, Hashim U.
    Punwani, Shonit
    [J]. BRITISH JOURNAL OF RADIOLOGY, 2018, 91 (1083)
  • [3] ESUR prostate MR guidelines 2012
    Barentsz, Jelle O.
    Richenberg, Jonathan
    Clements, Richard
    Choyke, Peter
    Verma, Sadhna
    Villeirs, Geert
    Rouviere, Olivier
    Logager, Vibeke
    Futterer, Jurgen J.
    [J]. EUROPEAN RADIOLOGY, 2012, 22 (04) : 746 - 757
  • [4] Active Surveillance for Low-risk Prostate Cancer: The European Association of Urology Position in 2018
    Briganti, Alberto
    Fossati, Nicola
    Catto, James W. F.
    Cornford, Philip
    Montorsi, Francesco
    Mottet, Nicolas
    Wirth, Manfred
    Van Poppel, Hendrik
    [J]. EUROPEAN UROLOGY, 2018, 74 (03) : 357 - 368
  • [5] Development and external multicenter validation of Chinese Prostate Cancer Consortium prostate cancer risk calculator for initial prostate biopsy
    Chen, Rui
    Xie, Liping
    Xue, Wei
    Ye, Zhangqun
    Ma, Lulin
    Gao, Xu
    Ren, Shancheng
    Wang, Fubo
    Zhao, Lin
    Xu, Chuanliang
    Sun, Yinghao
    [J]. UROLOGIC ONCOLOGY-SEMINARS AND ORIGINAL INVESTIGATIONS, 2016, 34 (09) : 416.e1 - 416.e7
  • [6] Prostate MRI, with or without MRI-targeted biopsy, and systematic biopsy for detecting prostate cancer
    Drost, Frank-Jan H.
    Osses, Daniel F.
    Nieboer, Daan
    Steyerberg, Ewout W.
    Bangma, Chris H.
    Roobol, Monique J.
    Schoots, Ivo G.
    [J]. COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2019, (04):
  • [7] Rethinking prostate cancer screening: could MRI be an alternative screening test?
    Eldred-Evans, David
    Tam, Henry
    Sokhi, Heminder
    Padhani, Anwar R.
    Winkler, Mathias
    Ahmed, Hashim U.
    [J]. NATURE REVIEWS UROLOGY, 2020, 17 (09) : 526 - 539
  • [8] Combined Use of Prostate-specific Antigen Density and Magnetic Resonance Imaging for Prostate Biopsy Decision Planning: A Retrospective Multi-institutional Study Using the Prostate Magnetic Resonance Imaging Outcome Database
    Falagario, Ugo Giovanni
    Jambor, Ivan
    Lantz, Anna
    Ettala, Otto
    Stabile, Armando
    Taimen, Pekka
    Aronen, Hannu J.
    Knaapila, Juha
    Perez, Ileana Montoya
    Gandaglia, Giorgio
    Fossati, Nicola
    Martini, Alberto
    Cucchiara, Vito
    Picker, Wolfgang
    Haug, Erik
    Ratnani, Parita
    Haines, Kenneth
    Lewis, Sara
    Sujit, Nair
    Selvaggio, Oscar
    Sanguedolce, Francesca
    Macarini, Luca
    Cormio, Luigi
    Nordstrom, Tobias
    Tewari, Ash
    Briganti, Alberto
    Bostrom, Peter J.
    Carrieri, Giuseppe
    [J]. EUROPEAN UROLOGY ONCOLOGY, 2021, 4 (06): : 971 - 979
  • [9] George RS, 2022, UROL ONCOL-SEMIN ORI, V40, P262, DOI 10.1016/j.urolonc.2022.03.003
  • [10] A new era: artificial intelligence and machine learning in prostate cancer
    Goldenberg, S. Larry
    Nir, Guy
    Salcudean, Septimiu E.
    [J]. NATURE REVIEWS UROLOGY, 2019, 16 (07) : 391 - 403