PZT-Enabled MoS2 Floating Gate Transistors: Overcoming Boltzmann Tyranny and Achieving Ultralow Energy Consumption for High-Accuracy Neuromorphic Computing

被引:23
作者
Chen, Jing [1 ,2 ]
Zhu, Ye-Qing [3 ,4 ]
Zhao, Xue-Chun [3 ,4 ]
Wang, Zheng-Hua [1 ]
Zhang, Kai [1 ]
Zhang, Zheng [1 ]
Sun, Ming-Yuan [1 ]
Wang, Shuai [1 ]
Zhang, Yu [1 ,5 ]
Han, Lin [1 ,5 ,6 ,7 ]
Wu, Xiaoming [3 ,4 ]
Ren, Tian-Ling [3 ,4 ]
机构
[1] Shandong Univ, Inst Marine Sci & Technol, Qingdao 266237, Shandong, Peoples R China
[2] Tsinghua Univ, BNRist, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Sch Integrated Circuits, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol BNRist, Beijing 100084, Peoples R China
[5] Shandong Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
[6] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Shandong, Peoples R China
[7] Shandong Engn Res Ctr Biomarker & Artificial Intel, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
low-subthreshold swing transistor; wide hysteresis window; neuromorphic devices; two-dimensional material; low-energy consumption; FIELD-EFFECT TRANSISTOR;
D O I
10.1021/acs.nanolett.3c02721
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Low-power electronic devices play a pivotal role in the burgeoning artificial intelligence era. The study of such devices encompasses low-subthreshold swing (SS) transistors and neuromorphic devices. However, conventional field-effect transistors (FETs) face the inherent limitation of the "Boltzmann tyranny", which restricts SS to 60 mV decade-1 at room temperature. Additionally, FET-based neuromorphic devices lack sufficient conductance states for highly accurate neuromorphic computing due to a narrow memory window. In this study, we propose a pioneering PZT-enabled MoS2 floating gate transistor (PFGT) configuration, demonstrating a low SS of 46 mV decade(-1) and a wide memory window of 7.2 V in the dual-sweeping gate voltage range from -7 to 7 V. The wide memory window provides 112 distinct conductance states for PFGT. Moreover, the PFGT-based artificial neural network achieves an outstanding facial-recognition accuracy of 97.3%. This study lays the groundwork for the development of low-SS transistors and highly energy efficient artificial synapses utilizing two-dimensional materials.
引用
收藏
页码:10196 / 10204
页数:9
相关论文
共 67 条
  • [1] Synaptic computation
    Abbott, LF
    Regehr, WG
    [J]. NATURE, 2004, 431 (7010) : 796 - 803
  • [2] Abelé N, 2005, INT EL DEVICES MEET, P1075
  • [3] [Anonymous], 2022, Extended Yale Face Database B (B+)
  • [4] Neuromorphic computing with multi-memristive synapses
    Boybat, Irem
    Le Gallo, Manuel
    Nandakumar, S. R.
    Moraitis, Timoleon
    Parnell, Thomas
    Tuma, Tomas
    Rajendran, Bipin
    Leblebici, Yusuf
    Sebastian, Abu
    Eleftheriou, Evangelos
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [5] Optoelectronic graded neurons for bioinspired in-sensor motion perception
    Chen, Jiewei
    Zhou, Zheng
    Kim, Beom Jin
    Zhou, Yue
    Wang, Zhaoqing
    Wan, Tianqing
    Yan, Jianmin
    Kang, Jinfeng
    Ahn, Jong-Hyun
    Chai, Yang
    [J]. NATURE NANOTECHNOLOGY, 2023, 18 (08) : 882 - +
  • [6] Polarized Tunneling Transistor for Ultrafast Memory
    Chen, Jing
    Dun, Guanhua
    Hu, Jianguo
    Lin, Zhu
    Wang, Yuhao
    Lu, Tian
    Li, Ping
    Wei, Tiantian
    Zhu, Junqiang
    Wang, Jing
    Li, Xiyou
    Wu, Xiao-Ming
    Yang, Yi
    Ren, Tian-Ling
    [J]. ACS NANO, 2023, 17 (13) : 12374 - 12382
  • [7] A novel negative quantum capacitance field-effect transistor with molybdenum disulfide integrated gate stack and steep subthreshold swing for ultra-low power applications
    Chen, Liang
    Wang, Huimin
    Huang, Qianqian
    Huang, Ru
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (06)
  • [8] Black Phosphorus/Ferroelectric P(VDF-TrFE) Field-Effect Transistors with High Mobility for Energy-Efficient Artificial Synapse in High-Accuracy Neuromorphic Computing
    Dang, Zhaoying
    Guo, Feng
    Duan, Huan
    Zhao, Qiyue
    Fu, Yuxiang
    Jie, Wenjing
    Jin, Kui
    Hao, Jianhua
    [J]. NANO LETTERS, 2023, 23 (14) : 6752 - 6759
  • [9] Dielectric Engineered Two-Dimensional Neuromorphic Transistors
    Du Xiang
    Liu, Tao
    Zhang, Xumeng
    Zhou, Peng
    Chen, Wei
    [J]. NANO LETTERS, 2021, 21 (08) : 3557 - 3565
  • [10] Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing
    Fuller, Elliot J.
    Keene, Scott T.
    Melianas, Armantas
    Wang, Zhongrui
    Agarwal, Sapan
    Li, Yiyang
    Tuchman, Yaakov
    James, Conrad D.
    Marinella, Matthew J.
    Yang, J. Joshua
    Salleo, Alberto
    Talin, A. Alec
    [J]. SCIENCE, 2019, 364 (6440) : 570 - +