Elucidating the mechanism underlying the augmented capacity of MoO2 as an anode material in Li-ion batteries

被引:9
|
作者
Wang, Hua [1 ,2 ]
Hao, Wei [3 ]
Li, Tianyi [4 ]
Li, Xintong [1 ]
Chang, Kai [1 ]
Zhou, Xinwei [5 ]
Hou, Dewen [5 ]
Hashem, Ahmed M. [6 ]
Hwang, Gyeong S. [3 ]
Liu, Yuzi [5 ]
Sun, Cheng-Jun [4 ]
Abdel-Ghany, Ashraf E. [6 ]
El-Tawil, Rasha S. [6 ]
Mohamed, Hanaa Abuzeid [6 ]
Abbas, Somia M. [6 ]
Mullins, C. Buddie [3 ]
Julien, Christian M. [7 ]
Zhu, Likun [1 ]
机构
[1] Indiana Univ Purdue Univ, Dept Mech & Energy Engn, Indianapolis, IN 46202 USA
[2] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[3] Univ Texas Austin, Dept Chem Engn & Chem, Austin, TX 78712 USA
[4] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA
[5] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
[6] Natl Res Ctr, Inorgan Chem Dept, 33 El Bohouth St, Dokki Giza 12622, Egypt
[7] Sorbonne Univ, Inst Mineral Phys Mat & Cosmol IMPMC, UMR CNRS 7590, 4 Pl Jussieu, F-75752 Paris, France
关键词
ELECTROCHEMICAL PERFORMANCE; ELECTRODE MATERIALS; CYCLIC STABILITY; METAL FLUORIDES; TIO2; ANATASE; NANO-IONICS; LITHIUM; STORAGE; NANOPARTICLES; CARBON;
D O I
10.1039/d3ta04794f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Transition-metal oxide anode materials have been observed to possess an intriguing surplus of capacity beyond the expected values based on conversion reaction. However, the mechanisms behind this phenomenon have remained contentious and elusive. This study focuses on synthesized nanosized molybdenum dioxide and its electrochemical performance as an anode material for Li-ion batteries. Our findings reveal a substantial increase in capacity upon cycling, achieving approximately 1688 mA h g(-1), nearly double the theoretical capacity, after 700 cycles at a 1C rate. To elucidate the mechanisms underlying this augmented capacity, a comprehensive analysis employing in situ and ex situ X-ray diffraction, X-ray absorption spectroscopy, scanning electron microscopy, and transmission electron microscopy was conducted at various stages of the Li-ion cell cycling. Our results indicate that no conversion reaction occurs during the initial discharge phase, with Li2O and Mo remaining undetected. Instead, Li0.98MoO2 is generated upon lithiation. Further materials characterization employing electron energy loss spectroscopy and energy-dispersive X-ray spectroscopy on the cycled electrode suggests the potential formation of a metallic Li-rich layer at the interface of the Li-ion intercalated phase subsequent to the formation of Li0.98MoO2, contributing to the surplus Li storage. Moreover, electrochemical impedance spectroscopy coupled with ex situ SEM and TEM analyses reveals that alterations in particle size and morphology, along with changes in the solid electrolyte interphase (SEI) resistance, are instrumental in the capacity variation observed upon cycling.
引用
收藏
页码:23012 / 23025
页数:14
相关论文
共 50 条
  • [1] TiO2/MoO2 Nanocomposite as Anode Materials for High Power Li-ion Batteries with Exceptional Capacity
    Bauer, Dustin
    Roberts, Alexander J.
    Starkey, Chris L.
    Vedarajan, Raman
    Brett, Dan J. L.
    Shearing, Paul R.
    Matsumi, Noriyoshi
    Darr, Jawwad A.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (05): : 5120 - 5140
  • [2] 2-Carboxyethylgermanium Sesquioxide as A Promising Anode Material for Li-Ion Batteries
    Saverina, Evgeniya A.
    Kapaev, Roman R.
    Stishenko, Pavel, V
    Galushko, Alexey S.
    Balycheva, Victoriya A.
    Ananikov, Valentine P.
    Egorov, Mikhail P.
    Jouikov, Viatcheslav V.
    Troshin, Pavel A.
    Syroeshkin, Mikhail A.
    CHEMSUSCHEM, 2020, 13 (12) : 3137 - 3146
  • [3] Nanostructured Silicon as Potential Anode Material for Li-Ion Batteries
    Raic, Matea
    Mikac, Lara
    Maric, Ivan
    Stefanic, Goran
    Skrabic, Marko
    Gotic, Marijan
    Ivanda, Mile
    MOLECULES, 2020, 25 (04):
  • [4] MnO/C Nanocomposites as High Capacity Anode Materials for Li-Ion Batteries
    Liu, Jia
    Pan, Qinmin
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2010, 13 (10) : A139 - A142
  • [5] Progress on Li3VO4 as a Promising Anode Material for Li-ion Batteries
    Mo, Jun
    Zhang, Xiumei
    Liu, Junjie
    Yu, Jingang
    Wang, Zhian
    Liu, Zaichun
    Yuan, Xinhai
    Zhou, Chunjiao
    Li, Ruilian
    Wu, Xiongwei
    Wu, Yuping
    CHINESE JOURNAL OF CHEMISTRY, 2017, 35 (12) : 1789 - 1796
  • [6] 3D Interconnected MoO2 Nanocrystals on Nickel Foam as Binder-free Anode for Li-ion Batteries
    Qi Yanyuan
    Zhou Bo
    Zheng Shenbo
    Yang Xue
    Jin Wei
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2018, 33 (06): : 1315 - 1322
  • [7] MoO2/Multiwalled Carbon Nanotubes (MWCNT) Hybrid for Use as a Li-Ion Battery Anode
    Bhaskar, Akkisetty
    Deepa, Melepurath
    Rao, Tata Narasinga
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (07) : 2555 - 2566
  • [8] Porous CoO/C polyhedra as anode material for Li-ion batteries
    Yuan, Weiwei
    Zhang, Jun
    Xie, Dong
    Dong, Zimin
    Su, Qingmei
    Du, Gaohui
    ELECTROCHIMICA ACTA, 2013, 108 : 506 - 511
  • [9] High Capacity MoO2/Graphite Oxide Composite Anode for Lithium-Ion Batteries
    Xu, Yun
    Yi, Ran
    Yuan, Bin
    Wu, Xiaofei
    Dunwell, Marco
    Lin, Qianglu
    Fei, Ling
    Deng, Shuguang
    Andersen, Paul
    Wang, Donghai
    Luo, Hongmei
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (03): : 309 - 314
  • [10] The potential application of phosphorene as an anode material in Li-ion batteries
    Zhao, Shijun
    Kang, Wei
    Xue, Jianming
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (44) : 19046 - 19052