Precise On-Chip Spectral and Temporal Control of Single-Photon-Level Optical Pulses

被引:1
作者
Widomski, Adam [1 ]
Stopinski, Stanislaw [2 ,3 ,4 ]
Anders, Krzysztof [2 ,3 ,4 ]
Piramidowicz, Ryszard [2 ,3 ,4 ]
Karpinski, Michal [1 ]
机构
[1] Univ Warsaw, Fac Phys, PL-02093 Warsaw, Poland
[2] Warsaw Univ Technol, Inst Microelect & Optoelect, PL-00662 Warsaw, Poland
[3] VIGO Photon SA, PL-05850 Ozarow, Mazowiecki, Poland
[4] Lighthouse Sp Zoo, PL-20151 Lublin, Poland
关键词
Symbols; Frequency shift keying; Photonics; Time-frequency analysis; Optical pulses; Optical transmitters; Protocols; Cryptography; indium phosphide; multidimensional; optical pulses; photonic integrated circuit; quantum key distribution; telecommunication; QUANTUM KEY DISTRIBUTION;
D O I
10.1109/JLT.2023.3278987
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The constantly growing need for fast and secure optical communication systems resulted in the rapid development of classical and quantum photonic technologies. Continuous research on improving the capacities of communication channels and the efficiency of optical information processing systems were naturally followed by miniaturization. Photonic integration combined with spectral-temporal multiplexing has led to improvements in communications. In this paper, we present accurate control of temporal and spectral profiles of optical pulses generated at the telecom wavelengths using an indium phosphide-based photonic integrated circuit. The device enables simultaneous temporally and spectrally resolved measurements using single photon counting. We discuss its applications in multidimensional time-frequency quantum key distribution, where security relies on time-frequency uncertainty, and other applications.
引用
收藏
页码:6255 / 6262
页数:8
相关论文
共 56 条
  • [11] Cambridge quantum network
    Dynes, J. F.
    Wonfor, A.
    Tam, W. W. -S.
    Sharpe, A. W.
    Takahashi, R.
    Lucamarini, M.
    Plews, A.
    Yuan, Z. L.
    Dixon, A. R.
    Cho, J.
    Tanizawa, Y.
    Elbers, J-P.
    Greisser, H.
    White, I. H.
    Penty, R. V.
    Shields, A. J.
    [J]. NPJ QUANTUM INFORMATION, 2019, 5 (1)
  • [12] Scalable Network for Simultaneous Pairwise Quantum Key Distribution via Entanglement-Based Time-Bin Coding
    Fitzke, Erik
    Bialowons, Lucas
    Dolejsky, Till
    Tippmann, Maximilian
    Nikiforov, Oleg
    Walther, Thomas
    Wissel, Felix
    Gunkel, Matthias
    [J]. PRX QUANTUM, 2022, 3 (02):
  • [13] Self-Synchronizing Pulse Position Modulation With Error Tolerance
    Fujiwara, Yuichiro
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (09) : 5352 - 5362
  • [14] Genovese M., 2007, J. Comput. Theor. Nanoscience, V1, P153
  • [15] Goda K, 2013, NAT PHOTONICS, V7, P102, DOI [10.1038/nphoton.2012.359, 10.1038/NPHOTON.2012.359]
  • [16] Free-space quantum key distribution in urban daylight with the SPGD algorithm control of a deformable mirror
    Gong, Yun-Hong
    Yang, Kui-Xing
    Yong, Hai-Lin
    Guan, Jian-Yu
    Shentu, Guo-Liang
    Liu, Chang
    Li, Feng-Zhi
    Cao, Yuan
    Yin, Juan
    Liao, Sheng-Kai
    Ren, Ji-Gang
    Zhang, Qiang
    Peng, Cheng-Zhi
    Pan, Jian-Wei
    [J]. OPTICS EXPRESS, 2018, 26 (15): : 18897 - 18905
  • [17] The limits of multiplexing quantum and classical channels: Case study of a 2.5 GHz discrete variable quantum key distribution system
    Gruenenfelder, Fadri
    Sax, Rebecka
    Boaron, Alberto
    Zbinden, Hugo
    [J]. APPLIED PHYSICS LETTERS, 2021, 119 (12)
  • [18] Ultra-Dense Wavelength-Division Multiplexing With Microring Modulator
    Guan, Xun
    Shi, Wei
    Rusch, Leslie Ann
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2021, 39 (13) : 4300 - 4306
  • [19] idquantique, US
  • [20] Indium Phosphide Photonic Integrated Circuit Transceiver for FMCW LiDAR
    Isaac, Brandon J.
    Song, Bowen
    Pinna, Sergio
    Coldren, Larry A.
    Klamkin, Jonathan
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2019, 25 (06)