Testing the missing at random assumption in generalized linear models in the presence of instrumental variables

被引:1
作者
Duan, Rui [1 ,6 ]
Liang, C. Jason [2 ]
Shaw, Pamela A. [3 ,4 ]
Tang, Cheng Yong [4 ]
Chen, Yong [5 ,7 ]
机构
[1] Harvard T H Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
[2] NIAID, Rockville, MD USA
[3] Kaiser Permanente Washington Hlth Res Inst, Seattle, WA USA
[4] Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA USA
[5] Temple Univ, Dept Stat Operat & Data Sci, Philadelphia, PA USA
[6] Harvard T H Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[7] Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Hausman test; hypothesis testing; influence function; instrumental variable; missing not at random; semiparametric inference; EMPIRICAL LIKELIHOOD APPROACH; DENSITY-ESTIMATION; NONPARAMETRIC-ESTIMATION; SEMIPARAMETRIC ESTIMATION; ESTIMATING EQUATIONS; ASYMPTOTIC-BEHAVIOR; LONGITUDINAL DATA; ESTIMATORS; SELECTION; EFFICIENCY;
D O I
10.1111/sjos.12685
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Practical problems with missing data are common, and many methods have been developed concerning the validity and/or efficiency of statistical procedures. On a central focus, there have been longstanding interests on the mechanism governing data missingness, and correctly deciding the appropriate mechanism is crucially relevant for conducting proper practical investigations. In this paper, we present a new hypothesis testing approach for deciding between the conventional notions of missing at random and missing not at random in generalized linear models in the presence of instrumental variables. The foundational idea is to develop appropriate discrepancy measures between estimators whose properties significantly differ only when missing at random does not hold. We show that our testing approach achieves an objective data-oriented choice between missing at random or not. We demonstrate the feasibility, validity, and efficacy of the new test by theoretical analysis, simulation studies, and a real data analysis.
引用
收藏
页码:334 / 354
页数:21
相关论文
共 66 条
[1]   NONPARAMETRIC-ESTIMATION OF JOINT DISCRETE-CONTINUOUS PROBABILITY DENSITIES WITH APPLICATIONS [J].
AHMAD, IA ;
CERRITO, PB .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1994, 41 (03) :349-364
[2]   MULTIVARIATE BINARY DISCRIMINATION BY KERNEL METHOD [J].
AITCHISON, J ;
AITKEN, CGG .
BIOMETRIKA, 1976, 63 (03) :413-420
[3]  
Asch D. A., 2012, WAY HLTH
[4]   Doubly robust estimation in missing data and causal inference models [J].
Bang, H .
BIOMETRICS, 2005, 61 (04) :962-972
[5]   Improving upon the efficiency of complete case analysis when covariates are MNAR [J].
Bartlett, Jonathan W. ;
Carpenter, James R. ;
Tilling, Kate ;
Vansteelandt, Stijn .
BIOSTATISTICS, 2014, 15 (04) :719-730
[6]   Testing Missing at Random Using Instrumental Variables [J].
Breunig, Christoph .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2019, 37 (02) :223-234
[7]   A test of missing completely at random for generalised estimating equations with missing data [J].
Chen, HY ;
Little, R .
BIOMETRIKA, 1999, 86 (01) :1-13
[8]   Regression analysis of longitudinal data with irregular and informative observation times [J].
Chen, Yong ;
Ning, Jing ;
Cai, Chunyan .
BIOSTATISTICS, 2015, 16 (04) :727-739
[9]   On the asymptotic behaviour of the pseudolikelihood ratio test statistic with boundary problems [J].
Chen, Yong ;
Liang, Kung-Yee .
BIOMETRIKA, 2010, 97 (03) :603-620
[10]  
Donoho DL, 1996, ANN STAT, V24, P508