Bayesian Detection of Bias in Peremptory Challenges Using Historical Strike Data

被引:0
作者
Pandya, Sachin S. [1 ]
Li, Xiaomeng [2 ]
Baron, Eric [2 ]
Moore, Timothy E. [3 ]
机构
[1] Univ Connecticut, Sch Law, Hartford, CT 06103 USA
[2] Univ Connecticut, Dept Stat, Storrs, CT USA
[3] Univ Connecticut, Ctr Open Res Resources & Equipment, Stat Consulting Serv, Storrs, CT USA
关键词
Batson challenge; Bayesian; Peremptory strikes; Power prior; DOUBLY ROBUST ESTIMATION; MISSING DATA; CAUSAL INFERENCE; EMPIRICAL LIKELIHOOD; MULTIPLE ROBUSTNESS; REGRESSION; EFFICIENCY; ESTIMATOR;
D O I
10.1080/00031305.2023.2249967
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
United States law bars using peremptory strikes during jury selection because of prospective juror race, ethnicity, sex, or membership in certain other cognizable classes. Here, we extend a Bayesian approach for detecting such illegal strike bias by showing how to incorporate historical data on an attorney's use of peremptory strikes in past cases. In so doing, we use the power prior to adjust the weight of such historical information in the analysis. Using simulations, we show how the choice of the power prior's discounting parameter influences bias detection (how likely the credible interval for the bias parameter excludes zero), depending on the degree of incompatibility between current and historical trial data. Finally, we extend this approach with a prototype software application that lawyers could use to detect strike bias in real time during jury-selection. We illustrate this application's use with real historical strike data from a convenience sample of cases from one court.
引用
收藏
页码:209 / 219
页数:11
相关论文
共 50 条
[41]   Using Propensity Score Weighting to Reduce Selection Bias in Large-Scale Data Sets [J].
Bishop, Crystal D. ;
Leite, Walter L. ;
Snyder, Patricia A. .
JOURNAL OF EARLY INTERVENTION, 2018, 40 (04) :347-362
[42]   Nonlinear Bayesian algorithms for gas plume detection and estimation from hyper-spectral thermal image data [J].
Heasler, Patrick ;
Posse, Christian ;
Hylden, Jeff ;
Anderson, Kevin .
SENSORS, 2007, 7 (06) :905-920
[43]   Decentralized and Dynamic Fault Detection Using PCA and Bayesian Inference [J].
Sanchez-Fernandez, A. ;
Fuente, M. J. ;
Sainz-Palmero, G. I. .
2018 IEEE 23RD INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2018, :800-807
[44]   Detection of trend changes in time series using Bayesian inference [J].
Schuetz, Nadine ;
Holschneider, Matthias .
PHYSICAL REVIEW E, 2011, 84 (02)
[45]   Malware Detection Using Nonparametric Bayesian Clustering and Classification Techniques [J].
Kao, Yimin ;
Reich, Brian ;
Storlie, Curtis ;
Anderson, Blake .
TECHNOMETRICS, 2015, 57 (04) :535-546
[46]   Anomaly Detection from Diabetes Similarity Graphs using Community Detection and Bayesian Techniques [J].
Sebastian, Yakub ;
Chew, Jason Thomas ;
Tiong, Xun Ting ;
Raman, Valliappan ;
Fong, Alan Yean Yip ;
Then, Patrick Hang Hui .
PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION (IMCOM 2018), 2018,
[47]   Correspondence Analysis with Incomplete Paired Data using Bayesian Imputation [J].
de Tibeiro, Jules J. S. ;
Murdoch, Duncan J. .
BAYESIAN ANALYSIS, 2010, 5 (03) :519-532
[48]   Bayesian placement of fossils on phylogenies using quantitative morphometric data [J].
Parins-Fukuchi, Caroline .
EVOLUTION, 2018, 72 (09) :1801-1814
[49]   Using Trajectory Data to Improve Bayesian Optimization for Reinforcement Learning [J].
Wilson, Aaron ;
Fern, Alan ;
Tadepalli, Prasad .
JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 :253-282
[50]   Bayesian techniques for seismic hazard assessment using imprecise data [J].
Egozcue, JJ ;
Ruttener, E .
NATURAL HAZARDS, 1996, 14 (2-3) :91-112