Modeling of Blockchain Assisted Intrusion Detection on IoT Healthcare System Using Ant Lion Optimizer With Hybrid Deep Learning

被引:7
|
作者
Alamro, Hayam [1 ]
Marzouk, Radwa [1 ]
Alruwais, Nuha [2 ]
Negm, Noha [3 ]
Aljameel, Sumayh S. [4 ]
Khalid, Majdi [5 ]
Hamza, Manar Ahmed [6 ]
Alsaid, Mohamed Ibrahim [6 ]
机构
[1] Princess Nourah bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Syst, Riyadh 11671, Saudi Arabia
[2] King Saud Univ, Coll Appl Studies & Community Serv, Dept Comp Sci & Engn, Riyadh 11495, Saudi Arabia
[3] King Khalid Univ, Coll Sci & Art Mahayil, Dept Comp Sci, Abha 62529, Saudi Arabia
[4] Imam Abdulrahman Bin Faisal Univ, Coll Comp Sci & Informat Technol, Dept Comp Sci, Dammam 31441, Saudi Arabia
[5] Umm Al Qura Univ, Coll Comp & Informat Syst, Dept Comp Sci, Mecca 24382, Saudi Arabia
[6] Prince Sattam bin Abdulaziz Univ, Dept Comp & Self Dev, Al Kharj 16278, Saudi Arabia
关键词
Deep learning; ant lion optimizer; Internet of Things; healthcare; blockchain; security;
D O I
10.1109/ACCESS.2023.3299589
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An IoT healthcare system refers to the use of Internet of Things (IoT) devices and technologies in the healthcare industry. It involves the integration of various interconnected devices, sensors, and systems to collect, monitor, and transmit health-related data for medical purposes. Blockchain-assisted intrusion detection on IoT healthcare systems is an innovative approach to enhancing the security and privacy of sensitive medical data. By combining the decentralized and immutable nature of blockchain technology with intrusion detection systems (IDS), it is possible to create a more robust and trustworthy security framework for IoT healthcare systems. With this motivation, this study presents Blockchain Assisted IoT Healthcare System using Ant Lion Optimizer with Hybrid Deep Learning (BHS-ALOHDL) technique. The presented BHS-ALOHDL technique enables IoT devices in the healthcare sector to transmit medical data securely and detects intrusions in the system. To accomplish this, the BHS-ALOHDL technique performs ALO based feature subset selection (ALO-FSS) system to produce a series of feature vectors. The HDL model integrates convolutional neural network (CNN) features and long short-term memory (LSTM) model for intrusion detection. Lastly, the flower pollination algorithm (FPA) is exploited for the optimal hyperparameter tuning of the HDL approach, which results in an enhanced detection rate. The experimental outcome of the BHS-ALOHDL system was tested on two benchmark datasets and the outcomes indicate the promising performance of the BHS-ALOHDL technique over other models.
引用
收藏
页码:82199 / 82207
页数:9
相关论文
共 50 条
  • [21] Optimal Deep-Learning-Based Cyberattack Detection in a Blockchain-Assisted IoT Environment
    Assiri, Fatmah Y.
    Ragab, Mahmoud
    MATHEMATICS, 2023, 11 (19)
  • [22] An optimized Bi-LSTM with deep learning-based intrusion detection system in healthcare using Blockchain
    Darla, Swathi
    Naveena, C.
    Ajay, B. N.
    Ahmed, Muzammel
    INFORMATION SECURITY JOURNAL, 2025,
  • [23] A Hybrid Deep Learning Approach for Intrusion Detection in IoT Networks
    Emec, Murat
    Ozcanhan, Mehmet Hilal
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2022, 22 (01) : 3 - 12
  • [24] Deep learning enabled intrusion detection system for Industrial IOT environment
    Nandanwar, Himanshu
    Katarya, Rahul
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [25] Hybrid intrusion detection system using blockchain framework
    S. R. Khonde
    V. Ulagamuthalvi
    EURASIP Journal on Wireless Communications and Networking, 2022
  • [26] Edge Computing Network Intrusion Detection System in IoT Using Deep Learning
    Hinojosa, Andres
    Majd, Nahid Ebrahimi
    2024 33RD INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS AND NETWORKS, ICCCN 2024, 2024,
  • [27] Hybrid distributed deep-GAN Intrusion detection System in IoT with Autoencoder
    Balaji S.
    Sankaranarayanan S.
    International Journal of Fuzzy System Applications, 2022, 11 (04):
  • [28] Hybrid intrusion detection system using blockchain framework
    Khonde, S. R.
    Ulagamuthalvi, V.
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2022, 2022 (01)
  • [29] Hybrid optimization and deep learning based intrusion detection system
    Gupta, Subham Kumar
    Tripathi, Meenakshi
    Grover, Jyoti
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 100
  • [30] A network intrusion detection system based on deep learning in the IoT
    Wang, Xiao
    Dai, Lie
    Yang, Guang
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (16) : 24520 - 24558