The ins and outs of membrane bending by intrinsically disordered proteins

被引:15
|
作者
Yuan, Feng [1 ]
Lee, Christopher T. [2 ]
Sangani, Arjun [1 ]
Houser, Justin R. [1 ]
Wang, Liping [3 ]
Lafer, Eileen M. [3 ]
Rangamani, Padmini [2 ]
Stachowiak, Jeanne C. [1 ,4 ]
机构
[1] Univ Texas Austin, Dept Biomed Engn, Austin, TX 78712 USA
[2] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
[3] Univ Texas Hlth Sci Ctr San Antonio, Dept Biochem & Struct Biol, San Antonio, TX USA
[4] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA
关键词
NUCLEAR-PORE COMPLEX; PHASE-SEPARATION; CURVATURE; TRANSPORT; BRUSHES; POLYMER; DOMAIN;
D O I
10.1126/sciadv.adg3485
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Membrane curvature is essential to diverse cellular functions. While classically attributed to structured domains, recent work illustrates that intrinsically disordered proteins are also potent drivers of membrane bending. Specifically, repulsive interactions among disordered domains drive convex bending, while attractive interactions drive concave bending, creating membrane-bound, liquid-like condensates. How might disordered domains that contain both repulsive and attractive domains affect curvature? Here, we examined chimeras that combined attractive and repulsive interactions. When the attractive domain was closer to the membrane, its condensation amplified steric pressure among repulsive domains, leading to convex curvature. In contrast, when the repulsive domain was closer to the membrane, attractive interactions dominated, resulting in concave curvature. Further, a transition from convex to concave curvature occurred with increasing ionic strength, which reduced repulsion while enhancing condensation. In agreement with a simple mechanical model, these results illustrate a set of design rules for membrane bending by disordered proteins.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Intrinsically disordered proteins and structured proteins with intrinsically disordered regions have different functional roles in the cell
    Deiana, Antonio
    Forcelloni, Sergio
    Porrello, Alessandro
    Giansanti, Andrea
    PLOS ONE, 2019, 14 (08):
  • [32] Dynamical Coupling of Intrinsically Disordered Proteins and Their Hydration Water: Comparison with Folded Soluble and Membrane Proteins
    Gallat, F. -X.
    Laganowsky, A.
    Wood, K.
    Gabel, F.
    van Eijck, L.
    Wuttke, J.
    Moulin, M.
    Haertlein, M.
    Eisenberg, D.
    Colletier, J. -P.
    Zaccai, G.
    Weik, M.
    BIOPHYSICAL JOURNAL, 2012, 103 (01) : 129 - 136
  • [33] Intrinsically disordered proteins and their (disordered) proteomes in neurodegenerative disorders
    Uversky, Vladimir N.
    FRONTIERS IN AGING NEUROSCIENCE, 2015, 7
  • [34] Membrane Insertion of Intrinsically Disordered Proteins Probed by Rotational and Triplet State Dynamics
    Vishvakarma, Vicky
    Maiti, Sudipta
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 309A - 309A
  • [35] Dynamics and interactions of intrinsically disordered proteins
    Arai, Munehito
    Suetaka, Shunji
    Ooka, Koji
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2024, 84
  • [36] Design of functional intrinsically disordered proteins
    Garg, Ankush
    Gonzalez-Foutel, Nicolas S.
    Gielnik, Maciej B.
    Kjaergaard, Magnus
    PROTEIN ENGINEERING DESIGN & SELECTION, 2024, 37
  • [37] Making Sense of Intrinsically Disordered Proteins
    Dyson, H. Jane
    BIOPHYSICAL JOURNAL, 2016, 110 (05) : 1013 - 1016
  • [38] Structural biophysics of intrinsically disordered proteins
    Showalter, Scott
    Gibbs, Eric
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [39] Intrinsically disordered proteins related to epigenomics
    Nishimura, Yoshifumi
    GENES & GENETIC SYSTEMS, 2014, 89 (06) : 293 - 293
  • [40] Intrinsically disordered proteins: administration not executive
    Williamson, Mike P.
    Potts, Jennifer R.
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2012, 40 : 945 - 949