The ins and outs of membrane bending by intrinsically disordered proteins

被引:22
作者
Yuan, Feng [1 ]
Lee, Christopher T. [2 ]
Sangani, Arjun [1 ]
Houser, Justin R. [1 ]
Wang, Liping [3 ]
Lafer, Eileen M. [3 ]
Rangamani, Padmini [2 ]
Stachowiak, Jeanne C. [1 ,4 ]
机构
[1] Univ Texas Austin, Dept Biomed Engn, Austin, TX 78712 USA
[2] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
[3] Univ Texas Hlth Sci Ctr San Antonio, Dept Biochem & Struct Biol, San Antonio, TX USA
[4] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA
关键词
NUCLEAR-PORE COMPLEX; PHASE-SEPARATION; CURVATURE; TRANSPORT; BRUSHES; POLYMER; DOMAIN;
D O I
10.1126/sciadv.adg3485
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Membrane curvature is essential to diverse cellular functions. While classically attributed to structured domains, recent work illustrates that intrinsically disordered proteins are also potent drivers of membrane bending. Specifically, repulsive interactions among disordered domains drive convex bending, while attractive interactions drive concave bending, creating membrane-bound, liquid-like condensates. How might disordered domains that contain both repulsive and attractive domains affect curvature? Here, we examined chimeras that combined attractive and repulsive interactions. When the attractive domain was closer to the membrane, its condensation amplified steric pressure among repulsive domains, leading to convex curvature. In contrast, when the repulsive domain was closer to the membrane, attractive interactions dominated, resulting in concave curvature. Further, a transition from convex to concave curvature occurred with increasing ionic strength, which reduced repulsion while enhancing condensation. In agreement with a simple mechanical model, these results illustrate a set of design rules for membrane bending by disordered proteins.
引用
收藏
页数:12
相关论文
共 47 条
[1]   LIPOSOME ELECTROFORMATION [J].
ANGELOVA, MI ;
DIMITROV, DS .
FARADAY DISCUSSIONS, 1986, 81 :303-+
[2]   pH sensing by lipids in membranes: The fundamentals of pH-driven migration, polarization and deformations of lipid bilayer assemblies [J].
Angelova, Miglena I. ;
Bitbol, Anne-Florence ;
Seigneuret, Michel ;
Staneva, Galya ;
Kodama, Atsuji ;
Sakuma, Yuka ;
Kawakatsu, Toshihiro ;
Imai, Masayuki ;
Puff, Nicolas .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2018, 1860 (10) :2042-2063
[3]   Protein Phase Separation: A New Phase in Cell Biology [J].
Boeynaems, Steven ;
Alberti, Simon ;
Fawzi, Nicolas L. ;
Mittag, Tanja ;
Polymenidou, Magdalini ;
Rousseau, Frederic ;
Schymkowitz, Joost ;
Shorter, James ;
Wolozin, Benjamin ;
Van den Bosch, Ludo ;
Tompa, Peter ;
Fuxreiter, Monika .
TRENDS IN CELL BIOLOGY, 2018, 28 (06) :420-435
[4]   Effect of salt on self-assembly in charged block copolymer micelles [J].
Borisov, OV ;
Zhulina, EB .
MACROMOLECULES, 2002, 35 (11) :4472-4480
[5]  
Brangwynne CP, 2015, NAT PHYS, V11, P899, DOI [10.1038/NPHYS3532, 10.1038/nphys3532]
[6]   Residue-by-Residue View of In Vitro FUS Granules that Bind the C-Terminal Domain of RNA Polymerase II [J].
Burke, Kathleen A. ;
Janke, Abigail M. ;
Rhine, Christy L. ;
Fawzi, Nicolas L. .
MOLECULAR CELL, 2015, 60 (02) :231-241
[7]   Intrinsically disordered proteins drive membrane curvature [J].
Busch, David J. ;
Houser, Justin R. ;
Hayden, Carl C. ;
Sherman, Michael B. ;
Lafer, Eileen M. ;
Stachowiak, Jeanne C. .
NATURE COMMUNICATIONS, 2015, 6
[9]   Beyond the Random Coil: Stochastic Conformational Switching in Intrinsically Disordered Proteins [J].
Choi, Ucheor B. ;
McCann, James J. ;
Weninger, Keith R. ;
Bowen, Mark E. .
STRUCTURE, 2011, 19 (04) :566-576
[10]   BAR Domain Scaffolds in Dynamin-Mediated Membrane Fission [J].
Daumke, Oliver ;
Roux, Aurelien ;
Haucke, Volker .
CELL, 2014, 156 (05) :882-892