Detecting and Removing Clouds Affected Regions from Satellite Images Using Deep Learning

被引:0
作者
Egharevba, Lawrence [1 ]
Kumar, Sanjoy [1 ,2 ]
Amini, Hadi [1 ]
Adjouadi, Malek [1 ]
Rishe, Naphtali [1 ]
机构
[1] Florida Int Univ, Knight Fdn Sch Comp & Informat Sci, Miami, FL 33131 USA
[2] Shahjalal Univ Sci & Technol, Elect & Elect Engn Dept, Dhaka, Bangladesh
来源
IPSI BGD TRANSACTIONS ON INTERNET RESEARCH | 2023年 / 19卷 / 02期
基金
美国国家科学基金会;
关键词
Artificial Intelligence; Cloud Detection and Removal; Deep Learning; Image Reconstruction; Remote Sensing; THICK CLOUDS; LANDSAT; MISSION; TRENDS; SHADOW;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep Learning is becoming a very popular tool for generating and reconstructing images. Research has shown that deep learning algorithms can perform cutting-edge restoration tasks for various types of images. The performance of these algorithms can be achieved by training Deep Convolutional Neural Networks (DCNNs) with data from a large sample size. The processing of high-resolution satellite imagery becomes difficult when there are only a few images in a dataset. An approach based on the intrinsic properties of Deep Convolutional Neural Networks (DCNNs) is presented in this paper for the detection and removal of clouds from remote sensing images without any prior training. Our results demonstrated that the algorithm we used performed well when compared to trained algorithms.
引用
收藏
页码:13 / 23
页数:11
相关论文
共 50 条
  • [1] Thick Clouds Removal From Multitemporal ZY-3 Satellite Images Using Deep Learning
    Chen, Yang
    Tang, Luliang
    Yang, Xue
    Fan, Rongshuang
    Bilal, Muhammad
    Li, Qingquan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 (143-153) : 143 - 153
  • [2] A review of deep learning techniques for detecting animals in aerial and satellite images
    Xu, Zeyu
    Wang, Tiejun
    Skidmore, Andrew K.
    Lamprey, Richard
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 128
  • [3] STREET LIGHT SEGMENTATION IN SATELLITE IMAGES USING DEEP LEARNING
    Teixeira, Ana Claudia
    Carneiro, Gabriel
    Filipe, Vitor
    Cunha, Antonio
    Sousa, Joaquim J.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6862 - 6865
  • [4] Detecting beach litter in drone images using deep learning
    Pfeiffer, Roland
    Valentino, Gianluca
    Farrugia, Reuben A.
    Colica, Emanuele
    D'Amico, Sebastiano
    Calleja, Stefano
    2022 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR THE SEA LEARNING TO MEASURE SEA HEALTH PARAMETERS (METROSEA), 2022, : 28 - 32
  • [5] Detecting Pipeline Pathways in Landsat 5 Satellite Images with Deep Learning
    Dasenbrock, Jan
    Pluta, Adam
    Zech, Matthias
    Medjroubi, Wided
    ENERGIES, 2021, 14 (18)
  • [6] Thick Clouds Removing From Multitemporal Landsat Images Using Spatiotemporal Neural Networks
    Chen, Yang
    Weng, Qihao
    Tang, Luliang
    Zhang, Xia
    Bilal, Muhammad
    Li, Qingquan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [7] Deep learning for detecting visually impaired cataracts using fundus images
    Xie, He
    Li, Zhongwen
    Wu, Chengchao
    Zhao, Yitian
    Lin, Chengmin
    Wang, Zhouqian
    Wang, Chenxi
    Gu, Qinyi
    Wang, Minye
    Zheng, Qinxiang
    Jiang, Jiewei
    Chen, Wei
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2023, 11
  • [8] Detecting cardiovascular diseases from radiographic images using deep learning techniques
    Alsanea, Majed
    Dutta, Ashit Kumar
    EXPERT SYSTEMS, 2024, 41 (07)
  • [9] A Deep Learning Framework for the Detection of Tropical Cyclones From Satellite Images
    Nair, Aravind
    Srujan, K. S. S. Sai
    Kulkarni, Sayali R.
    Alwadhi, Kshitij
    Jain, Navya
    Kodamana, Hariprasad
    Sandeep, S.
    John, Viju O.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [10] Building Extraction from RGB Satellite Images using Deep Learning: A U-Net Approach
    Temenos, Anastasios
    Protopapadakis, Eftychios
    Doulamis, Anastasios
    Temenos, Nikos
    THE 14TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS, PETRA 2021, 2021, : 391 - 395