We prove that the number of irreducible ordinary characters in the principal p-block of a finite group G of order divisible by p is always at least 2 & RADIC;p - 1. This confirms a conjecture of Hethelyi and Kulshammer (2000) for principal blocks and provides an affirmative answer to Brauer's problem 21 (1963) for principal blocks of bounded defect. Our proof relies on recent works of Maroti (2016) and Malle and Maroti (2016) on bounding the conjugacy class number and the number of p & PRIME;-degree irreducible characters of finite groups, earlier works of Broue, Malle and Michel (1993) and Cabanes and Enguehard (2004) on the distribution of characters into unipotent blocks and e-Harish-Chandra series of finite reductive groups, and known cases of the Alperin-McKay conjecture.
机构:
Univ Buenos Aires, Dept Matemat, FCEyN, IMAS CONICET, Buenos Aires, DF, ArgentinaUniv Buenos Aires, Dept Matemat, FCEyN, IMAS CONICET, Buenos Aires, DF, Argentina
Ivan Piterman, Kevin
Smith, Stephen D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Math, Chicago, IL 60680 USA
728 Wisconsin, Oak Pk, IL 60304 USAUniv Buenos Aires, Dept Matemat, FCEyN, IMAS CONICET, Buenos Aires, DF, Argentina
机构:
Amirkabir Univ Technol, Tehran Polytech, Fac Math & Comp Sci, Tehran 15914, IranAmirkabir Univ Technol, Tehran Polytech, Fac Math & Comp Sci, Tehran 15914, Iran
机构:
Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-a, I-50134 Florence, ItalyAmirkabir Univ Technol, Fac Math & Comp Sci, Tehran Polytech, Tehran 15914, Iran
Dolfi, Silvio
Pacifici, Emanuele
论文数: 0引用数: 0
h-index: 0
机构:
Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-a, I-50134 Florence, ItalyAmirkabir Univ Technol, Fac Math & Comp Sci, Tehran Polytech, Tehran 15914, Iran