Denoising Raman spectra using a single layer convolutional model trained on simulated data

被引:4
|
作者
Gil, Eddie M. [1 ]
Cheburkanov, Vsevolod [1 ]
Yakovlev, Vladislav V. [1 ,2 ]
机构
[1] Texas A&M Univ, Dept Biomed Engn, College Stn, TX USA
[2] Texas A&M Univ, Dept Biomed Engn, 3120 TAMU, 101 Bizzell St, College Stn, TX 77843 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
machine learning; noise; Raman imaging; signal-to-noise ratio; IN-VIVO; SPECTROSCOPY;
D O I
10.1002/jrs.6559
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Raman spectroscopy is a powerful means of revealing chemical and structural information about a sample and acquiring chemically specific images. Such images often suffer from low signal to noise ratios (SNR). In this report, a novel way to improve the SNR using machine learning tools based on simulated data. The proposed approach offers an alternative to time consuming acquisition and labeling of large data sets and can be readily applied to unknown systems. Here, the efficacy of a single layer denoising network trained only on simulated data was evaluated, and it was found that the proposed model was able to provide a substantial improvement in SNR.
引用
收藏
页码:814 / 822
页数:9
相关论文
共 50 条
  • [1] Denoising Raman Spectra Using Autoencoder for Improved Analysis of Contamination in HDD
    Gulyanon, Sarun
    Deepaisarn, Somrudee
    Chokphantavee, Sorawit
    Chokphantavee, Sirawit
    Prathipasen, Phuriphan
    Laitrakun, Seksan
    Opaprakasit, Pakorn
    Viriyavit, Waranrach
    Jaikaew, Narisara
    Jindakaew, Jirawan
    Rakpongsiri, Pornchai
    Meechamnan, Thawanpat
    Sompongse, Duangporn
    IEEE ACCESS, 2024, 12 : 113661 - 113676
  • [2] Classification of skin cancer using convolutional neural networks analysis of Raman spectra
    Bratchenko, Ivan A.
    Bratchenko, Lyudmila A.
    Khristoforova, Yulia A.
    Moryatov, Alexander A.
    V. Kozlo, Sergey
    Zakharo, Valery P.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 219
  • [3] Unsupervised Seismic Data Denoising Using Diffusion Denoising Model
    Sun, Fuyao
    Lin, Hongbo
    Li, Yue
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [4] Denoising diffusion weighted imaging data using convolutional neural networks
    Cheng, Hu
    Vinci-Booher, Sophia
    Wang, Jian
    Caron, Bradley
    Wen, Qiuting
    Newman, Sharlene
    Pestilli, Franco
    PLOS ONE, 2022, 17 (09):
  • [5] G′ band Raman spectra of single, double and triple layer graphene
    Park, J. S.
    Reina, A.
    Saito, R.
    Kong, J.
    Dresselhaus, G.
    Dresselhaus, M. S.
    CARBON, 2009, 47 (05) : 1303 - 1310
  • [6] A stacked convolutional sparse denoising autoencoder model for underwater heterogeneous information data
    Wang, Xingmei
    Zhao, Yixu
    Teng, Xuyang
    Sun, Weiqi
    APPLIED ACOUSTICS, 2020, 167
  • [7] Fish species identification using a convolutional neural network trained on synthetic data
    Allken, Vaneeda
    Handegard, Nils Olav
    Rosen, Shale
    Schreyeck, Tiffanie
    Mahiout, Thomas
    Malde, Ketil
    ICES JOURNAL OF MARINE SCIENCE, 2019, 76 (01) : 342 - 349
  • [8] A practical convolutional neural network model for discriminating Raman spectra of human and animal blood
    Dong, Jialin
    Hong, Mingjian
    Xu, Yi
    Zheng, Xiangquan
    JOURNAL OF CHEMOMETRICS, 2019, 33 (11)
  • [9] Automated Event Detection and Denoising Method for Passive Seismic Data Using Residual Deep Convolutional Neural Networks
    Othman, Abdullah
    Iqbal, Naveed
    Hanafy, Sherif M.
    Bin Waheed, Umair
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [10] Improving skin cancer detection by Raman spectroscopy using convolutional neural networks and data augmentation
    Zhao, Jianhua
    Lui, Harvey
    Kalia, Sunil
    Lee, Tim K.
    Zeng, Haishan
    FRONTIERS IN ONCOLOGY, 2024, 14