Xenotransplantation: Current Challenges and Emerging Solutions

被引:33
作者
Arabi, Tarek Ziad [1 ,2 ]
Sabbah, Belal Nedal [2 ,3 ]
Lerman, Amir [4 ]
Zhu, Xiang-Yang [1 ,5 ]
Lerman, Lilach O. [1 ]
机构
[1] Mayo Clin, Div Nephrol & Hypertens, Rochester, MN USA
[2] Alfaisal Univ, Coll Med, Riyadh, Saudi Arabia
[3] Mayo Clin, Dept Urol, Rochester, MN USA
[4] Mayo Clin, Dept Cardiol, Rochester, MN USA
[5] Mayo Clin, Div Nephrol & Hypertens, 200 First St SW, Rochester, MN 55905 USA
关键词
xenotransplantation; immune rejection; diagnostic biomarkers; predictive biomarkers; genetic editing; xenoantigens; tolerance induction; NATURAL-KILLER-CELL; ENDOTHELIAL-CELLS; PIG; EXPRESSION; TRANSPLANTATION; XENOGRAFTS; ACTIVATION; BABOONS; COAGULATION; MACROPHAGES;
D O I
10.1177/09636897221148771
中图分类号
Q813 [细胞工程];
学科分类号
摘要
To address the ongoing shortage of organs available for replacement, xenotransplantation of hearts, corneas, skin, and kidneys has been attempted. However, a major obstacle facing xenotransplants is rejection due to a cycle of immune reactions to the graft. Both adaptive and innate immune systems contribute to this cycle, in which natural killer cells, macrophages, and T-cells play a significant role. While advancements in the field of genetic editing can circumvent some of these obstacles, biomarkers to identify and predict xenograft rejection remain to be standardized. Several T-cell markers, such as CD3, CD4, and CD8, are useful in both the diagnosis and prediction of xenograft rejection. Furthermore, an increase in the levels of various circulating DNA markers and microRNAs is also predictive of xenograft rejection. In this review, we summarize recent findings on the advancements in xenotransplantation, with a focus on pig-to-human, the role of immunity in xenograft rejection, and its biomarkers.
引用
收藏
页数:10
相关论文
共 86 条
[1]   Xenoantigen Deletion and Chemical Immunosuppression Can Prolong Renal Xenograft Survival [J].
Adams, Andrew B. ;
Kim, Steven C. ;
Martens, Gregory R. ;
Ladowski, Joseph M. ;
Estrada, Jose L. ;
Reyes, Luz M. ;
Breeden, Cindy ;
Stephenson, Allison ;
Eckhoff, Devin E. ;
Tector, Matt ;
Tector, Alfred Joseph .
ANNALS OF SURGERY, 2018, 268 (04) :564-573
[2]   Circulating cell-free DNA as a biomarker of tissue injury: Assessment in a cardiac xenotransplantation model [J].
Agbor-Enoh, Sean ;
Chan, Joshua L. ;
Singh, Avneesh ;
Tunc, Ilker ;
Gorham, Sasha ;
Zhu, Jun ;
Pirooznia, Mehdi ;
Corcoran, Philip C. ;
Thomas, Marvin L. ;
Lewis, Billeta G. T. ;
Jang, Moon Kyoo ;
Ayares, David L. ;
Horvath, Keith A. ;
Mohiuddin, Muhammad M. ;
Valantine, Hannah .
JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2018, 37 (08) :967-975
[3]   Naive neutrophils and xenotransplantation [J].
AlMohanna, FA ;
Collison, KS ;
Allen, SP ;
Stern, D ;
Yacoub, MH .
LANCET, 1996, 348 (9036) :1246-1246
[4]  
Baker LA., 2015, PLOS ONE, V10
[5]  
Bühler L, 2000, TRANSPLANTATION, V70, P1323
[6]   B4GALNT2 and xenotransplantation: A newly appreciated xenogeneic antigen [J].
Byrne, Guerard ;
Ahmad-Villiers, Saadullah ;
Du, Zeji ;
McGregor, Christopher .
XENOTRANSPLANTATION, 2018, 25 (05)
[7]   The Role of Macrophages in Xenograft Rejection [J].
Cadili, A. ;
Kneteman, N. .
TRANSPLANTATION PROCEEDINGS, 2008, 40 (10) :3289-3293
[8]   T cell independence of macrophage and natural killer cell infiltration, cytokine production, and endothelial activation during delayed xenograft rejection [J].
Candinas, D ;
Belliveau, S ;
Koyamada, N ;
Miyatake, T ;
Hechenleitner, P ;
Mark, W ;
Bach, FH ;
Hancock, WW .
TRANSPLANTATION, 1996, 62 (12) :1920-1927
[9]  
Chan JL., 2017, CURR OPIN ORGAN TRAN, V22
[10]  
Chen D., 2006, XENOTRANSPLANTATION, V13