Post-fire investigation on the mechanical properties and physical characteristics of fibre-reinforced geopolymer concrete

被引:4
|
作者
Prasad Burle, Vijaya [1 ]
Kiran, Tattukolla [1 ]
Anand, N. [1 ]
Andrushia, Diana [2 ]
Al-Jabri, Khalifa [3 ]
机构
[1] Karunya Inst Technol & Sci, Dept Civil Engn, Coimbatore, India
[2] Karunya Inst Technol & Sci, Dept ECE, Coimbatore, India
[3] Sultan Qaboos Univ, Dept Civil & Architectural Engn, Muscat, Oman
关键词
Steel fibre; Basalt fibre; Polypropylene fibre; Geopolymer concrete; Elevated temperature; Mechanical properties; HIGH-STRENGTH CONCRETE; FLY-ASH; BASALT FIBER; HIGH-TEMPERATURE; FIRE RESISTANCE; BEHAVIOR; COMPOSITE;
D O I
10.1108/JSFE-01-2023-0016
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
PurposeThe construction industries at present are focusing on designing sustainable concrete with less carbon footprint. Considering this aspect, a Fibre-Reinforced Geopolymer Concrete (FGC) was developed with 8 and 10 molarities (M). At elevated temperatures, concrete experiences deterioration of its mechanical properties which is in some cases associated with spalling, leading to the building collapse.Design/methodology/approachIn this study, six geopolymer-based mix proportions are prepared with crimped steel fibre (SF), polypropylene fibre (PF), basalt fibre (BF), a hybrid mixture consisting of (SF + PF), a hybrid mixture with (SF + BF), and a reference specimen (without fibres). After temperature exposure, ultrasonic pulse velocity, physical characteristics of damaged concrete, loss of compressive strength (CS), split tensile strength (TS), and flexural strength (FS) of concrete are assessed. A polynomial relationship is developed between residual strength properties of concrete, and it showed a good agreement.FindingsThe test results concluded that concrete with BF showed a lower loss in CS after 925 degrees C (i.e. 60 min of heating) temperature exposure. In the case of TS, and FS, the concrete with SF had lesser loss in strength. After 986 degrees C and 1029 degrees C exposure, concrete with the hybrid combination (SF + BF) showed lower strength deterioration in CS, TS, and FS as compared to concrete with PF and SF + PF. The rate of reduction in strength is similar to that of GC-BF in CS, GC-SF in TS and FS.Originality/valuePerformance evaluation under fire exposure is necessary for FGC. In this study, we provided the mechanical behaviour and physical properties of SF, PF, and BF-based geopolymer concrete exposed to high temperatures, which were evaluated according to ISO standards. In addition, micro-structural behaviour and linear polynomials are observed.
引用
收藏
页码:147 / 174
页数:28
相关论文
共 50 条
  • [41] Post-fire mechanical properties of glass-reinforced polyester composites
    Mouritz, AP
    Mathys, Z
    COMPOSITES SCIENCE AND TECHNOLOGY, 2001, 61 (04) : 475 - 490
  • [42] Experimental investigation of nonlinear flow characteristics in cracked polypropylene fibre-reinforced concrete
    Ma, Weili
    Xu, Zengguang
    Qin, Yuan
    Cao, Cheng
    Wang, Yixuan
    Zhou, Heng
    MATERIALS AND STRUCTURES, 2021, 54 (06)
  • [43] Durability characteristics of steel fibre reinforced geopolymer concrete
    Ganesan, N.
    Abraham, Ruby
    Raj, S. Deepa
    CONSTRUCTION AND BUILDING MATERIALS, 2015, 93 : 471 - 476
  • [44] Experimental investigation of nonlinear flow characteristics in cracked polypropylene fibre-reinforced concrete
    Weili Ma
    Zengguang Xu
    Yuan Qin
    Cheng Cao
    Yixuan Wang
    Heng Zhou
    Materials and Structures, 2021, 54
  • [45] Effects of nanoparticles on the mechanical behaviour of fibre-reinforced concrete
    Lopes, Joo Pedro
    Ferrari, Vladimir Jose
    Camoes, Aires
    Souza, Aloysio
    Fangueiro, Raul
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-CONSTRUCTION MATERIALS, 2023, 176 (04) : 161 - 170
  • [46] Prediction of fire spalling in fibre-reinforced high strength concrete
    Mugume, R. B.
    Horiguchi, T.
    CONCRETE SPALLING DUE TO FIRE EXPOSURE: PROCEEDINGS OF THE 3RD INTERNATIONAL WORKSHOP, 2013, 6
  • [47] Effects of nanoparticles on the mechanical behaviour of fibre-reinforced concrete
    Lopes, Joao Pedro
    Ferrari, Vladimir Jose
    Camoes, Aires
    Souza, Aloysio
    Fangueiro, Raul
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-CONSTRUCTION MATERIALS, 2020, 176 (04) : 161 - 170
  • [48] Post-fire seismic performance of reinforced concrete structures
    Duzgun, Oguz Akin
    Kucuk, Elif Nazli
    STRUCTURES, 2024, 59
  • [49] Assessment of reinforced concrete slabs post-fire performance
    Shachar, Yedidya M.
    Dancygier, Avraham N.
    FIRE SAFETY JOURNAL, 2020, 111
  • [50] Experimental study of the mechanical properties of basalt fibre-reinforced concrete at elevated temperatures
    Lu, Limin
    Han, Fei
    Qin, Yuwen
    Wu, Shaohua
    Yuan, Guanglin
    Zhao, Qingli
    Doh, Jeung-Hwan
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2022, 26 (15) : 7586 - 7600