The Comparison of Long Short-Term Memory Neural Network and Deep Forest for the Evaporation Duct Height Prediction

被引:1
作者
Liao, Qixiang [1 ]
Mai, Yanbo [2 ]
Sheng, Zheng [1 ]
Wang, Yuhui [3 ]
Ni, Qingjian [3 ]
Zhou, Shudao [1 ]
机构
[1] Natl Univ Def Technol, Coll Meteorol & Oceanol, Changsha 410073, Peoples R China
[2] Natl Univ Def Technol, Coll Elect Sci & Technol, Changsha 410073, Peoples R China
[3] Southeast Univ, Sch Comp Sci & Engn, Nanjing 211189, Peoples R China
关键词
Forestry; Atmospheric modeling; Predictive models; Prediction algorithms; Ducts; Training; Humidity; Deep forest; deep learning; evaporation duct; machine learning; OCEANIC EVAPORATION; MODEL;
D O I
10.1109/TAP.2023.3254201
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An evaporation duct is a type of atmospheric stratification that affects radio systems. Atmospheric duct prediction is helpful for radar detection. In this article, we used the deep forest, which is different from a deep learning framework, to predict the atmospheric duct height. At the same time, the long short-term memory (LSTM) neural network and other machine learning algorithms, such as the logistic regression (LR), random forest (RF), Bayes, and support vector regression (SVR) algorithms, were adopted to predict the evaporation duct height (EDH). The predicted results with filled and unfilled missing data show that an accurate prediction of the EDH can be achieved using the deep forest.
引用
收藏
页码:4444 / 4450
页数:7
相关论文
共 30 条
[1]  
Babin SM, 1997, J APPL METEOROL, V36, P193, DOI 10.1175/1520-0450(1997)036<0193:ANMOTO>2.0.CO
[2]  
2
[3]  
Babin SM, 2002, J APPL METEOROL, V41, P434, DOI 10.1175/1520-0450(2002)041<0434:LBEDMC>2.0.CO
[4]  
2
[5]   Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature [J].
Chai, T. ;
Draxler, R. R. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2014, 7 (03) :1247-1250
[6]   Aerosol optical properties in the Arctic: The role of aerosol chemistry and dust composition in a closure experiment between Lidar and tethered balloon vertical profiles [J].
Ferrero, L. ;
Ritter, C. ;
Cappelletti, D. ;
Moroni, B. ;
Mocnik, G. ;
Mazzola, M. ;
Lupi, A. ;
Becagli, S. ;
Traversi, R. ;
Cataldi, M. ;
Neuber, R. ;
Vitale, V. ;
Bolzacchini, E. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 686 :452-467
[7]   Evaporation Duct Height Nowcasting in China's Yellow Sea Based on Deep Learning [J].
Han, Jie ;
Wu, Jia-Ji ;
Zhu, Qing-Lin ;
Wang, Hong-Guang ;
Zhou, Yu-Feng ;
Jiang, Ming-Bo ;
Zhang, Shou-Bao ;
Wang, Bo .
REMOTE SENSING, 2021, 13 (08)
[8]   Observations of Inertia Gravity Waves in the Western Pacific and Their Characteristic in the 2015/2016 Quasi-Biennial Oscillation Disruption [J].
He, Yang ;
Zhu, Xiaoqian ;
Sheng, Zheng ;
He, Mingyuan ;
Feng, Yutao .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2022, 127 (22)
[9]   An artificial neural network predictor for tropospheric surface duct phenomena [J].
Isaakidis, S. A. ;
Dimou, I. N. ;
Xenos, T. D. ;
Dris, N. A. .
NONLINEAR PROCESSES IN GEOPHYSICS, 2007, 14 (05) :569-573
[10]   Determination of the evaporation duct height from standard meteorological data [J].
Ivanov, V. K. ;
Shalyapin, V. N. ;
Levadnyi, Yu. V. .
IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2007, 43 (01) :36-44