Acoustic Resonance Spectroscopy with an Uncalibrated Microwave Path

被引:0
作者
Alekseev, S. G. [1 ]
Luzanov, V. A. [2 ]
Raevsky, A. O. [2 ]
Balashov, V. V. [2 ]
Lopukhin, K. V. [2 ]
Polzikova, N. I. [1 ]
机构
[1] Russian Acad Sci, Kotelnikov Inst Radio Engn & Elect, Moscow 125009, Russia
[2] Russian Acad Sci, Kotelnikov Inst Radio Engn & Elect, Fryazino Branch, Fryazino 141120, Moscow Region, Russia
关键词
bulk acoustic wave resonator; HBAR; piezoelectric transducer; calibration; excitation efficiency; acoustic absorption; ATTENUATION; RESONATORS; WAVES; FILMS;
D O I
10.1134/S106377102206001X
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Acoustic resonance spectroscopy (ARS) is an informative analytical method that yields information about thicknesses and acoustic properties of layers in a multilayer structure representing a high-overtone bulk acoustic wave resonator (HBAR). Since the HBAR spectrum has many resonance features, the development of automatic methods for its processing is an urgent task. In this study, a method for extracting ARS data from a signal distorted by a RF measuring path without additional measurements of reference impedances (calibration) is proposed, which brings the spectrum to a form convenient for automatic processing and significantly expands the range of the ARS application. The method is especially relevant for processing HBAR spectra with a low excitation efficiency. As an example of such processing, the central frequencies and effective widths of more than a thousand resonant peaks are determined and, based on this, the frequency dependence of the acoustic attenuation is established for a new material: optical ceramics based on doped yttrium aluminum garnet nanoparticles.
引用
收藏
页码:40 / 47
页数:8
相关论文
共 24 条
  • [1] Alekseev SG, 2008, J COMMUN TECHNOL EL+, V53, P113, DOI 10.1007/s11487-008-1014-6
  • [2] Trapping of acoustic energy in composite resonators based on cubic crystals
    Alekseev, S. G.
    Mansfeld, G. D.
    Polzikova, N. I.
    [J]. JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2006, 51 (08) : 925 - 931
  • [3] Study of Spatial Distribution of Piezoelectric Properties of ZnO Films by Acoustic Resonator Spectroscopy
    Alekseev, S. G.
    Luzanov, V. A.
    Polzikova, N. I.
    [J]. JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2020, 65 (11) : 1339 - 1344
  • [4] Magnons parametric pumping in bulk acoustic waves resonator
    Alekseev, S. G.
    Dizhur, S. E.
    Polzikova, N., I
    Luzanov, V. A.
    Raevskiy, A. O.
    Orlov, A. P.
    Kotov, V. A.
    Nikitov, S. A.
    [J]. APPLIED PHYSICS LETTERS, 2020, 117 (07)
  • [5] Study of layered structures using modified acoustic resonator spectroscopy
    Alekseev, S. G.
    Kotelyanskii, I. M.
    Polzikova, N. I.
    Mansfel'd, G. D.
    [J]. JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2015, 60 (03) : 300 - 307
  • [6] BPZT HBARs for Magnetoelastic Stress Generation at GHz Frequencies
    Bhaskar, U. K.
    Tierno, D.
    Talmelli, G.
    Ciubotaru, F.
    Adelmann, C.
    Devolder, T.
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2020, 67 (06) : 1284 - 1290
  • [7] Epitaxial bulk acoustic wave resonators as highly coherent multi-phonon sources for quantum acoustodynamics
    Gokhale, Vikrant J.
    Downey, Brian P.
    Katzer, D. Scott
    Nepal, Neeraj
    Lang, Andrew C.
    Stroud, Rhonda M.
    Meyer, David J.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [8] Effect of anisotropy on the kinetics and acoustic characteristics of phonons in YAG-, Y2O3-, and Lu2O3-based ceramics
    Khazanov, E. N.
    Taranov, A. V.
    Alekseev, S. G.
    Polzikova, N. I.
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2014, 118 (01) : 87 - 92
  • [9] Kino G. S., 1990, ACOUSTIC WAVES DEVIC
  • [10] KRUTOV BN, 1994, ACOUST PHYS+, V40, P562