Reinforcement learning with dynamic convex risk measures

被引:7
作者
Coache, Anthony [1 ]
Jaimungal, Sebastian [1 ,2 ]
机构
[1] Univ Toronto, Dept Stat Sci, Toronto, ON, Canada
[2] Univ Oxford, Oxford Man Inst, Oxford, England
基金
加拿大自然科学与工程研究理事会;
关键词
actor-critic algorithm; dynamic risk measures; financial hedging; policy gradient; reinforcement learning; robot control; time-consistency; trading strategies; APPROXIMATE; NETWORKS;
D O I
10.1111/mafi.12388
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We develop an approach for solving time-consistent risk-sensitive stochastic optimization problems using model-free reinforcement learning (RL). Specifically, we assume agents assess the risk of a sequence of random variables using dynamic convex risk measures. We employ a time-consistent dynamic programming principle to determine the value of a particular policy, and develop policy gradient update rules that aid in obtaining optimal policies. We further develop an actor-critic style algorithm using neural networks to optimize over policies. Finally, we demonstrate the performance and flexibility of our approach by applying it to three optimization problems: statistical arbitrage trading strategies, financial hedging, and obstacle avoidance robot control.
引用
收藏
页码:557 / 587
页数:31
相关论文
共 67 条
  • [41] Köse Ü, 2021, J MACH LEARN RES, V22
  • [42] MULTILAYER FEEDFORWARD NETWORKS WITH A NONPOLYNOMIAL ACTIVATION FUNCTION CAN APPROXIMATE ANY FUNCTION
    LESHNO, M
    LIN, VY
    PINKUS, A
    SCHOCKEN, S
    [J]. NEURAL NETWORKS, 1993, 6 (06) : 861 - 867
  • [43] Lyons TJ, 2004, The Mathematical Intelligencer, V26, P67
  • [44] Mehrotra, 2019, DISTRIBUTIONALLY ROB
  • [45] Mil'shtein G. N., 1974, Theory of Probability and Its Applications, V19, P557
  • [46] Envelope theorems for arbitrary choice sets
    Milgrom, P
    Segal, I
    [J]. ECONOMETRICA, 2002, 70 (02) : 583 - 601
  • [47] Nass D, 2019, IEEE INT C INT ROBOT, P1101, DOI [10.1109/iros40897.2019.8967699, 10.1109/IROS40897.2019.8967699]
  • [48] Ning B., 2021, ARBITRAGE FREE IMPLI
  • [49] Osogami Takayuki, 2012, Advances in Neural Information Processing Systems, V25, P233
  • [50] Peng S., 1997, PITMAN RES NOTES MAT