Reinforcement learning with dynamic convex risk measures

被引:7
作者
Coache, Anthony [1 ]
Jaimungal, Sebastian [1 ,2 ]
机构
[1] Univ Toronto, Dept Stat Sci, Toronto, ON, Canada
[2] Univ Oxford, Oxford Man Inst, Oxford, England
基金
加拿大自然科学与工程研究理事会;
关键词
actor-critic algorithm; dynamic risk measures; financial hedging; policy gradient; reinforcement learning; robot control; time-consistency; trading strategies; APPROXIMATE; NETWORKS;
D O I
10.1111/mafi.12388
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We develop an approach for solving time-consistent risk-sensitive stochastic optimization problems using model-free reinforcement learning (RL). Specifically, we assume agents assess the risk of a sequence of random variables using dynamic convex risk measures. We employ a time-consistent dynamic programming principle to determine the value of a particular policy, and develop policy gradient update rules that aid in obtaining optimal policies. We further develop an actor-critic style algorithm using neural networks to optimize over policies. Finally, we demonstrate the performance and flexibility of our approach by applying it to three optimization problems: statistical arbitrage trading strategies, financial hedging, and obstacle avoidance robot control.
引用
收藏
页码:557 / 587
页数:31
相关论文
共 67 条
  • [11] Dynamic assessment indices
    Bielecki, Tomasz R.
    Cialenco, Igor
    Drapeau, Samuel
    Karliczek, Martin
    [J]. STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2016, 88 (01) : 1 - 44
  • [12] Campbell S., 2021, DEEP LEARNING PRINCI
  • [13] Carmona R., 2021, DEEP LEARNING MEAN F
  • [14] Casgrain P., 2022, APPL MATH FINANCE
  • [15] Time-inconsistency of VaR and time-consistent alternatives
    Cheridito, Patrick
    Stadje, Mitja
    [J]. FINANCE RESEARCH LETTERS, 2009, 6 (01) : 40 - 46
  • [16] Chow Y, 2018, J MACH LEARN RES, V18
  • [17] Markov decision processes with iterated coherent risk measures
    Chu, Shanyun
    Zhang, Yi
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2014, 87 (11) : 2286 - 2293
  • [18] A Generative Adversarial Network Approach to Calibration of Local Stochastic Volatility Models
    Cuchiero, Christa
    Khosrawi, Wahid
    Teichmann, Josef
    [J]. RISKS, 2020, 8 (04) : 1 - 31
  • [19] Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274
  • [20] Percentile Optimization for Markov Decision Processes with Parameter Uncertainty
    Delage, Erick
    Mannor, Shie
    [J]. OPERATIONS RESEARCH, 2010, 58 (01) : 203 - 213