Some notes on the switching points for the generalized Hukuhara differentiability of interval-valued functions

被引:5
作者
Qiu, Dong [1 ,2 ]
Yu, Yan [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Comp Sci & Technol, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Coll Sci, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized Hukuhara differentiability; Switching points; Interval-valued functions; Interval analysis;
D O I
10.1016/j.fss.2022.04.004
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we give some comments on the recent results about the switching points for the gH-differentiability of interval -valued functions. We show by counterexamples that there exist switching points which are not critical points of the length function, and that there are GH-differentiable functions with an infinite number of switching points and gH-differentiable functions with an uncountable number of switching points. After reclassifying the switching points more finely, we also present some characteriza-tions for the switching points. The obtained results correct the known ones in the literature.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:115 / 129
页数:15
相关论文
共 15 条
  • [1] Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations
    Bede, B
    Gal, SG
    [J]. FUZZY SETS AND SYSTEMS, 2005, 151 (03) : 581 - 599
  • [2] Almost periodic fuzzy-number-valued functions
    Bede, B
    Gal, SG
    [J]. FUZZY SETS AND SYSTEMS, 2004, 147 (03) : 385 - 403
  • [3] Generalized differentiability of fuzzy-valued functions
    Bede, Barnabas
    Stefanini, Luciano
    [J]. FUZZY SETS AND SYSTEMS, 2013, 230 : 119 - 141
  • [4] New properties of the switching points for the generalized Hukuhara differentiability and some results on calculus ?
    Chalco-Cano, Y.
    Costa, T. M.
    Roman-Flores, H.
    Rufian-Lizana, A.
    [J]. FUZZY SETS AND SYSTEMS, 2021, 404 : 62 - 74
  • [5] Algebra of generalized Hukuhara differentiable interval-valued functions: review and new properties
    Chalco-Cano, Y.
    Maqui-Huaman, Gino G.
    Silva, G. N.
    Jimenez-Gamero, M. D.
    [J]. FUZZY SETS AND SYSTEMS, 2019, 375 : 53 - 69
  • [6] Characterizations of generalized differentiable fuzzy functions
    Chalco-Cano, Y.
    Rodriguez-Lopez, R.
    Jimenez-Gamero, M. D.
    [J]. FUZZY SETS AND SYSTEMS, 2016, 295 : 37 - 56
  • [7] Calculus for interval-valued functions using generalized Hukuhara derivative and applications
    Chalco-Cano, Y.
    Rufian-Lizana, A.
    Roman-Flores, H.
    Jimenez-Gamero, M. D.
    [J]. FUZZY SETS AND SYSTEMS, 2013, 219 : 49 - 67
  • [8] Generalized derivative and π-derivative for set-valued functions
    Chalco-Cano, Y.
    Roman-Flores, H.
    Jimenez-Gamero, M. D.
    [J]. INFORMATION SCIENCES, 2011, 181 (11) : 2177 - 2188
  • [9] Gelbaum J.M.H., 1990, THEOREMS COUNTEREXAM
  • [10] Goffman C., 1960, REAL FUNCTIONS